Joint Seminar: Daytime convective development over land: The role of surface forcing

Water availability at the Earth surface determines the portioning of the surface heat flux into its sensible and latent components, that is, the surface heat flux Bowen ratio. The two components affect differently the surface buoyancy flux and thus the development and growth of the convective boundary layer. As a result, the Bowen ratio has a critical impact on the daytime dry and moist convection development over land. We use two canonical modeling test cases, one for the shallow convection and one for the shallow-to-deep convection transition, to document the impact of the surface Bowen ratio on daytime convection development. A simple approach is used where results from simulations featuring the original setup are contrasted with simulations where surface sensible heat flux takes on values of the latent heat flux and vice versa. Such a change illustrates the key impact of the surface water availability without changing the total surface heat flux. Because of the larger surface buoyancy flux, simulations with the reversed surface heat fluxes feature faster deepening of the convective boundary layer and wider clouds once moist convection develops. Mean cloud base width of cumulus clouds increases as the boundary layer deepens. A simple explanation is provided of why deeper well-mixed convective subcloud layer results in wider clouds. The key is the larger width of boundary layer coherent updraft structures when the convective subcloud layer is deeper.

Datum

28.05.2024

Uhrzeit

15:15–16:15 Uhr

Ort

Bundesstr. 53, room 022/023
Seminar Room 022/023, Ground Floor, Bundesstrasse 53, 20146 Hamburg, Hamburg

Chair

Bjorn Stevens

Zur Übersicht