Ship emission influence on clouds: Perspectives from model calculations and satellite data

Karsten Peters\(^1\), Johannes Quaas\(^1\), Hartmut Grassi\(^1\)

\(^1\) Max-Planck-Institut für Meteorologie, Hamburg, \(^2\) International Max Planck Research School on Earth System Modelling, Hamburg

Motivation

Aerosol indirect effects (aerosol influence on clouds, AIEs) are the largest source of uncertainty when estimating climate sensitivity (Forster et al., 2007).

- Further basic research is needed.

Why ships?

- Emissions from ships significantly modify the composition of marine boundary layer (MBL) aerosol.
- Attribution of AIEs to the emissions.
- Future ship traffic is bound to increase.
- Future fuel-composition regulations (IMO, 2008) may change the emission-processing in the atmosphere.

Ship emissions in a GCM

- todays’ ship emissions do not lead to discernible AIEs in a fine-ran GCM with interactive aerosol treatment.
- scaling of ship emissions by a factor of 10(100) shows systematic changes in cloud properties.

- If future ship traffic increases distinctly (and ship pollution controls remain ineffective) in the future, significant observable AIEs from ship emissions can be expected.

Satellite data analysis

- reduced cloud droplet sizes of water clouds are observed over the English Channel.
- artifact of the satellite data?
- if not, why do we see it in the GCM? Is it an issue of resolution or of the parameterizations?
- we present a new method to sample for regions by which ship pollution influence on clouds could be observed.

The model perspective (GCM)

The tool

- ECHAM5-HAM aerosol climate model (Roeckner et al., 2003, Stier et al., 2005).
- TESLi31 resolution (2.8°x2.8° and 31 vertical levels).
- “AMIP-style” simulation (climatological SSTs).
- Ship emissions (BC, SO2) from the EU-UP QUANTIFY (Endresen et al., 2005, 2007) all other aerosol emissions as prescribed in AEROCOM (Dentener et al., 2006) or computed interactively.
- 7 year simulations, 5 year analysis period.

Results

Cloud top droplet number concentration change [d (N/m^3)]

increased BC emissions do not lead to large changes in cloud microphysical properties; SO2 is the main driver. Also, the mixing of the two species is crucial for aerosol-cloud interaction. BC-emission increase shows possible semi-direct effects (reduced cloud cover to net warming). Hansen et al., (1997)

Outlook

- Effects of increased model resolution
- Change of emission parameterization to assess the effect of locally large emissions
- Emission height to be made identical for both BC and SO2
- Internal mixing of BC and SO2 takes place seconds or minutes after emission.
- match mixing assumption in the model.

Conclusions

- The model does not predict a noticeable impact of ship emissions on cloud microphysical properties unless the emissions are scaled by one or two orders of magnitude.

The experiments

- So far, general sensitivity runs have been performed:
 - Control run (no ship emissions).
 - Original and scaled (x10, x100) ship emissions.
 - one emission component scaled (BC or SO2)

- This provides a first overview of the models’ response and the importance of interactive aerosol treatment.

The data

- GRAPE (Global Retrieval of ATSR Cloud Parameters and Evaluation, Thomas et al., 2009); processed from ATSR-2 measurements.
- time frame: 1995 – 2002

Low-cloud properties over Europe

- scenes with 100% water cloud fraction and high retrieval quality
- the cloud albedo at 3.7 μm should be anticorrelated with the effective radius
- fulfilled only for water surfaces
- Further investigation of surface reflectance influence on measurements needed.

- more stringent scene selection

The satellite perspective

The experiments

- Control run (no ship emissions).
- Original and scaled (x10, x100) ship emissions.
- one emission component scaled (BC or SO2)

Results

Increased BC emissions do not lead to large changes in cloud microphysical properties; SO2 is the main driver. Also, the mixing of the two species is crucial for aerosol-cloud interaction. BC-emission increase shows possible semi-direct effects (reduced cloud cover to net warming). Hansen et al., (1997)

Outlook

- Effects of local meteorology on clouds have to be ruled out.

References