Absorbing aerosols above clouds: Getting hold of the direct aerosol effect

Karsten Peters1,2, Johannes Quaas1

1Max Planck Institute for Meteorology, Hamburg
2University of Hamburg, Hamburg

EGU General Assembly 2009, Session AS1.6
April 21, 2009
Outline

I Motivation
II Data used
III Applied Method
IV Results
V Summary and Conclusions
August 13th, 2006
Motivation • Data used • Applied Method • Results • Summary and Conclusions

Albedo enhancement

Albedo reduction
absorbing aerosols can lead to a reduction of the local planetary albedo (LPA) in cloudy scenes

Radiative forcing at TOA can exceed +10 Wm\(^{-2}\)

(Haywood and Shine, 1997; Liao and Seinfeld, 1998a,b; Keil and Haywood, 2003; Chand et al., 2009)
State of Science

- numerous numerical studies have been conducted
- analysis of satellite data only for case studies and/or short time periods

up to now, no analysis of measurements on a global scale is existent
<table>
<thead>
<tr>
<th>Clouds</th>
<th>Aerosols</th>
<th>Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIS (EOS Aqua)</td>
<td>MODIS</td>
<td>CERES (EOS Aqua)</td>
</tr>
<tr>
<td>- cloud fraction</td>
<td>- Aerosol optical depth</td>
<td>- shortwave local planetary albedo</td>
</tr>
<tr>
<td>- cloud top temperature</td>
<td>OMI (EOS Aura)</td>
<td></td>
</tr>
<tr>
<td>AMSR-E (EOS Aqua)</td>
<td>- UV-Aerosolindex</td>
<td></td>
</tr>
<tr>
<td>- cloud liquid water path</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spatial and temporal coverage

0.25° x 0.25° over global oceans covering 2005 – 2006

Restrictions applied

solar zenith angle < 45°, OMI viewing angle < 30°
Cloudy sky LPA change with absorbing aerosol concentration

LPA depends on: 1) surface albedo
 2) cloud liquid water path (LWP)
 3) AOD (also influencing CDNC)

\[\alpha = a_0 + a_1 (\text{LWP}) + a_2 \ln(\text{AOD}) \]

- UV-Al benchmarks are applied for sampling of absorbing aerosols
The OMI UV-AI

\[
\text{UV-AI} = -100 \cdot \left\{ \log_{10} \left(\frac{I_\lambda}{I_{\lambda_0}} \right)^{\text{meas}} - \log_{10} \left(\frac{I_\lambda}{I_{\lambda_0}} \right)^{\text{calc}} \right\}
\]

- measurements in the UV with \(\lambda = 342.5 \) and \(\lambda_0 = 388 \) nm

reduced effect of clouds and surface (Herman and Celarier, 1997)

Response of the UV-AI to particles in the atmosphere (Torres, 1998):

- \(> 0 \) for absorbing aerosols
- \(< 0 \) for scattering aerosols
- \(\approx 0 \) for clouds
Cloudy sky LPA changes with absorbing aerosol concentration

Regression coefficient calculations performed for:

- 10 Regions
- 5 UV-AI bins
 - all UV-AI values
 - UV-AI < 0
 - 0 < UV-AI < 0.7
 - 0.7 < UV-AI < 1
 - UV-AI > 1

Only scenes with 100% low cloud fraction are used
LPA dependence on cloud and surface properties

\[\alpha = a_0 + a_1(LWP) + a_2 \ln(AOD) \]

Characteristic coefficient values

\(a_0 \): 0.03 – 0.33; surface albedo with no clouds and aerosols

\(a_1 \): 0.27 – 0.95; generally positive, very low uncertainty

reasonable values and low uncertainties for \(a_0 \) and \(a_1 \)

LPA in cloudy skies mainly determined by LWP
LPA dependence on aerosol properties

\[\alpha = a_0 + a_1 (\text{LWP}) + a_2 \ln(\text{AOD}) \]
LPA dependence on aerosol properties

\[\alpha = a_0 + a_1 (\text{LWP}) + a_2 \ln(\text{AOD}) \]
Radiative forcing calculations

Anthropogenic AOD Dataset supplied by Nicolas Bellouin (Hadley Centre, Met Office, Exeter, UK), as described in Bellouin et al., 2005
Regression Analysis

- relationship planetary albedo vs. aerosol optical depth in low-cloud scenes
 - mostly positive for scattering aerosols
 (> aerosol indirect effect?)
 - gets (more) negative for absorbing aerosols
 (> aerosol absorption above clouds)

Radiative forcing calculations

- follow seasonal cycle of absorbing aerosol emissions
 (e.g., biomass burning)
- global mean value
- forcing can exceed values of + 60 Wm\(^{-2}\) on small scales
- large uncertainties remain
Thanks for your attention

