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Abstract

Numerical weather predictionmodels provide tropical cyclone (TC) intensity and

track forecasts for up to ten days. Ensemble prediction systems (EPS) were intro-

duced to model alternative scenarios and produce probabilistic forecasts. The Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF) model was one of

the best-performing models in TC forecasts. However, systematic negative biases

were observed in its performance. A machine learning model based on XGBoost, a

decision-tree-based machine learning algorithm, is presented here, in which various

predictors such as selected percentiles of ensemble members in maximum wind and

minimum pressure of previous TC cases were regressed to forecast a deterministic

maximum wind of a TC. This XGBoost model was found to reduce the negative bi-

ases of ECMWF EPS and also enhance the overall performance. It is hoped that this

machine learning model will introduce a new avenue for TC forecasts for the pursuit

of higher accuracy.
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1 Introduction

Destructive winds, torrential rain and storm surges from tropical cyclones (TC) bring ex-

tensive damage to coastal areas and have cost hundreds of thousands of people’s lives in the

past few decades (Doocy, Dick, Daniels, & Kirsch, 2013). Numerical weather prediction

(NWP) assimilates atmospheric data and propagates via a series of mathematical differ-

ential equations and physical laws that describe the dynamics of the atmosphere. NWP

simulates the evolution of the atmosphere for local meteorological agencies to assess the

weather condition and evolution. If the models were accurate, agencies could issue timely

warnings to the general public and could effectively mitigate damages brought by weather

hazards (Bonavita et al., 2017).

However, NWP model accuracy is limited due to the chaotic nature of the atmosphere

and the initialization error. The chaotic nature of the atmosphere originates from the non-

linearity of atmospheric processes so that slight differences in the initial conditions gener-

ate errors that amplify over time and may ultimately develop into totally different regimes,

hence limiting its predictability especially in longer forecast periods. The initialization er-

ror attributes to various factors, including the sparse observations, especially over oceans.

For TC forecasts, NWP centres bogus a tropical cyclone vortex into the analysis stage

(P. Y. Chen & Chan, 2010), which may not represent the “real” cyclone in the atmosphere

well. The finite grid representation of atmosphere and approximations made in equations

applied in NWP models, which intend to achieve realistic general flow and reasonable

computational time, also lead to a loss of information in the continuous atmosphere. For

instance, the intense small-scale features in a TC such as its steep pressure gradient near

its centre, is not acknowledged and will be rejected by the model analysis. This results in

the smoothing out of the vortex which appears too large and weak in the model (Ander-
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sson & Hollingsworth, 1988). Furthermore, Bonavita et al. (2017) pointed out that even

if there were observations, such as dropsondes being made, the assimilated data may not

be representative due to various measurement errors. Parametrization and approximation

for sub-grid and not well understood physical processes introduce yet another source of

error.

To cater to the chaotic nature of atmosphere and the intrinsic measurement uncertainty

and error, ensemble approaches were developed to model alternative scenarios. The initial

conditions were slightly perturbed and allowed to propagate again. The perturbed run will

likely give a different result as the unperturbed “control” member. A number of perturbed

members with different perturbations and the control member form the ensemble forecast

and is further interpreted by meteorologists to assess the probability of the occurrence of

certain weather events (e.g. the passage of a tropical cyclone and rainfall rate exceeding

a certain threshold) or the probable range or spread of measurable parameters (e.g. wind

speed, pressure and precipitation).

Yet, ensemble forecast generates multiple scenarios at the cost of reduced grid reso-

lution. It is reasonable to infer that the TC vortices are also weaker than in reality. P. Y.

Chen and Chan (2010) found that the Japan Meteorological Agency (JMA) ensemble pre-

diction system (EPS) under-predicted TC’s intensity and extent of changes, especially for

stronger cyclones. In this study, we focused on the EPS output of the European Centre for

Medium-Range Weather Forecasts (ECMWF) model and it was discovered that ECMWF

EPS also underestimated the intensity of TCs yet the model was generally skillful in fore-

casting the trend of intensity change. This discovery prompted the search for a method to

forecast TC intensity and detect potential rapid intensification or weakening based on the

skills of the EPS model.

There has been previous research on the usage of various means of machine learning,

covering the forecasts or estimations of number of TCs in a TC season (Richman, Leslie,

Ramsay, &Klotzbach, 2017), TC tracks (Giffard-Roisin et al., 2020), TCwind field (Lori-

dan, Crompton, & Dubossarsky, 2017) and TC intensity (P. Y. Chen & Chan, 2010). It

has been shown that the forecast error could be reduced upon the application of machine

learning. In this study, we choose the XGBoost (Extreme Gradient Boosting) library,
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which is based on the gradient boosting algorithm, to generate a deterministic forecast of

TC intensity for five days or more. The predictors solely come from the EPS output of the

ECMWFmodel and we hope this framework could generate a forecast promptly when the

EPS products arrive at operational centres such that it could be referenced by forecasters

for real-time assessment of TC development.

As machine learning, in particular the gradient boosting algorithm, is rather new in

this field, the algorithm and relevant applications will be reviewed in the next chapter.

The source of errors of NWPmodels and techniques in forecasting rapid intensity changes

of TCs will also be discussed. The data set used in this study follows in Section 3. The

methodology is presented in Section 4. The study results are presented in Section 5 and

discussed in Section 6. Finally, conclusions and suggestions for further exploration of

machine learning in meteorology are made in Section 7.

2 Literature Review

2.1 XGBoost and its application

Established in 2014, XGBoost has become a popular machine learning method in data

science. The method was based on the gradient boosting algorithm which is composed

of weak learners made of decision trees. We define a loss function l(ŷi, yi) that measures

the difference between the prediction ŷi and the true value yi. The two most common

practices of the loss function are the absolute-error loss:

l(ŷi, yi) =
∑
i

|ŷi − yi| (1)

and the squared-error loss:

l(ŷi, yi) =
∑
i

1

2
(ŷi − yi)

2 (2)

One may choose the base-learner function that updates the model to be maximally corre-

lated to the negative gradient of the loss function (Natekin & Knoll, 2013). Note that for

the classic squared-error loss, the gradient of the loss is just the residual (ŷi − yi) and the

newly-built weak learners would gradually fit the errors. In the XGBoost method, an extra
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regularization parameter was added to avoid over-fitting by penalizing complex trees (T.

Chen and Guestrin, 2016). A randomization parameter was also introduced to reduce the

correlation between trees.

In light of the pursuit of a simple and general model, XGBoost supports the identi-

fication of feature importance. In general, the “gain” option is indicative of the average

reduction of the loss function when the feature is used in splits. In modeling variables

that are believed to be influenced by many features, it is important to identify significant

features to retain in the model and to remove features that contribute little to the model.

This reduces the complexity of the model and could avoid over-fitting.

In a study on the prediction of PM2.5 concentration in Tehran by Zamani Joharestani,

Cao, Ni, Bashir, and Talebiesfandarani (2019), there were around twenty features assim-

ilated into the model while they demonstrated differential importance to the model per-

formance. The authors removed features sequentially according to mean absolute error

(MAE) metrics but the model performance did not decrease when less important features

were removed from the model. We also observe that the importance rankings according to

the XGBoost built-in feature importance and the MAE metrics generally agreed for most

features. We question if the built-in importance is indicative of the variation in model

performance by the MAE or root-mean-square error (RMSE) metrics.

2.2 Sources of errors of NWP models

The fundamental ideas of numerical weather prediction (NWP) were first developed by

Lewis Fry Richardson, where some basic equations that govern the dynamics of the atmo-

sphere were identified and atmospheric variables at given latitude, longitude and height

in an instant were provided to describe the state of the atmosphere. The time-derivatives

were then transformed to finite time differences ∆t, and the state of the atmosphere after

∆t, 2∆t, 3∆t and so on could be yielded (Lynch, 2008).

However, Richardson’s first attempt to arithmetically calculate the atmosphere gave

a calamitous and unrealistic pressure change of 145 hPa over 6 hours. It was not until

the introduction of digital computers and the expansion of meteorological observation

network that the concept of NWP flourished.
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Although supercomputers are used in modern NWP models, certain complexity of the

atmosphere has to be simplified and grid resolution is limited to generate the prediction at

a faster pace than the atmosphere, for the model to be useful. Some unresolved, sub-grid

or not well understood physical processes are parametrized or approximated and become

a source of error. Moreover, despite the expansion of meteorological observation net-

work and the introduction of radiosondes, many regions, especially the oceans, are void

of data. These data-void regions have their atmospheric variables estimated by making

use of neighbouring data points, in order to simulate a continuous atmosphere. Such es-

timation may be erroneous and is known as the initialization error. Another source of

initialization error is that local observations may be easily affected by local or sub-grid

scale flows and become unrepresentative of large-scale general flows. In such cases, the

observations are modified to maintain a dynamically consistent initial state to properly

start the propagation (Lynch, 2008).

It should be noted that some authenticity in the state of the atmosphere is lost during the

modification, or in technical terms, the data assimilation stage. This impacts the analysis

of tropical cyclones that often results in a weaker-than-actual vortex. The maximum wind

of a TC occurs near its centre where the steepest pressure gradient is found. The Rossby

number (Ro) was defined as:

Ro =
V

rf
(3)

where V is the characteristic axial wind velocity, r is the radius from the centre and f =

2Ω sinϕ is the Coriolis parameter, with Ω = 7.292 × 10−5 s−1 as the angular velocity of

Earth’s rotation and ϕ as the latitude. At the vicinity of the eye wall, Ro is often high and

could reach 100 especially for intense storms, resulting in a cyclostrophic flow near the

core of the TC (Marks, 2015). The observations in cyclostrophic flow may be considered

as in conflict with the outer environment of the storm, where the flow is in general gradient

or geostrophic. Hence, the intense small-scale features near the core are not acknowledged

and the observation data on typhoon cores will be rejected (Andersson & Hollingsworth,

1988).

Typhoon bogussing schemes were developed to simulate a more realistic vortex. Sev-

eral physical parameters such as the latitude, longitude, storm size and minimum pres-
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sure were specified to generate a bogus vortex. Such vortex was inserted into the large

scale flow for initial analysis with the constraints that the bogus must not be in conflict

with any real observations nearby and should not adversely affect the large scale flow

(Andersson & Hollingsworth, 1988). Research showed that the motion of cyclones were

mainly governed by the large-scale flow away from the centre (Fiorino & Elsberry, 1986,

as cited in Andersson & Hollingsworth, 1988; DeMaria, 1986, as cited in Andersson &

Hollingsworth, 1988). In respect of the large scale flow and a realistic forecast, the analy-

sis often turned out to have the cyclone vortex smoothened when comparing to the bogus.

NWP forecasting skills have improved over the years and finer resolutions have been

achieved. There are also more satellite and data observations available for a better simula-

tion of the atmosphere. Bogussing schemes were also optimized to achieve a dynamically

and physically consistent environment. However, as to maintain a realistic general flow,

the intense features were still unresolvable and caused the underestimation in TC intensity.

Bogussing schemes usually adopt the Rankine vortex or the gradient wind balance. In

the Rankine vortex, the tangential velocity v at a radius r from the centre is given by:

v = A(z)F (r) (4)

F (r) =
vm
rm

r, r ≤ rm (5)

F (r) =
vm
rαm

rα, r ≥ rm (6)

where vm is the maximum wind of the bogus which is assumed to be lower than the re-

ported value. rm is the radius of maximum wind and A(z) reflects the amplitude and

height dependence. α is a parameter typically around −0.5.

For the gradient wind relationship, v is given by:

v(r) =

√
r

ρ

∂P

∂r
+

f 2r2

4
− r|f |

2
(7)

where P is the bogus pressure as a function of r and ρ is the density of air, assumed

constant at 1.2 kg m−3 (D. Wang, Liang, Ying, & Wang, 2008).

We note that these relationships do not represent a cyclostrophic flow well, which is

given by:

v(r) =

√
r

ρ

∂P

∂r
(8)
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Such flow may occur near the centre of intense cyclones where the Coriolis force is

negligible when compared with the centrifugal and pressure gradient forces. Ultimately,

even though the modeling and bogussing techniques have been improved, it is still very

often that NWP fails to give an accurate representation of TCs, especially for severe ty-

phoons.

2.3 Ensemble prediction systems

To counter the forecast errors due to the initialization errors, ensemble prediction systems

(EPS) were developed to simulate alternative scenarios of the atmosphere. Each ensemble

member was initialized with a slightly perturbed state ej:

ej(t = 0) = e0(t = 0) + δej(t = 0) (9)

where e0 was the operational analysis at t = 0 and δej was the initial perturbations, with

its amplitude scaled to be comparable to the initial error estimates. The propagation of ej

was then given by:
∂ej
∂t

= A(ej, t) + P
′

j (ej, t) (10)

where A and P
′ represented the non-parametrized and parametrized physical processes

respectively. P ′ was obtained through perturbing the unperturbed diabatic tendency P :

P
′

j (ej, t) = [1 + ⟨rj(λ, ϕ, σ⟩D,T ]P (ej, t) (11)

where rj was a random number with intervals [-0.5, 0.5], depending on the grid point’s

latitude λ, longitude ϕ and vertical hybrid coordinate σ. The same rj was used within a

D × D degree box and over T time steps. The final adoption for the ECMWF EPS was

D = 10 and T = 6 hours (Buizza, 2002).

There have been studies reviewing the performance of EPS in TC intensity forecasts.

P. Y. Chen and Chan (2010) reviewed the Japan Meteorological Agency’s (JMA) EPS

in the prediction of TC intensity. Although the ensemble mean intensity was considered

to perform better than the control or individual member forecasts as it filtered out uncer-

tain components in the forecast, it tended to smooth the change in intensity. In general

it demonstrated skills in forecasting intensity changes but was unable to capture the pro-

cesses of rapid intensification or weakening. Strong typhoons were hence rarely forecast
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and would be detrimental to hazard prevention. It was also found that the EPS had positive

biases in the TC initial central pressure, i.e. it analyzed a vortex which was too shallow.

The initial maximum wind also demonstrated systematic biases against the best track es-

timates for different storm strengths. Recalling the initialization errors and drawbacks of

initialization and bogussing schemes, post-processing methods should be sought to gen-

erate better forecasts while retaining the skills of the EPS.

2.4 Tropical cyclone rapid intensity change

Rapid intensity change in TCs has been a tricky problem for meteorologists, especially for

rapid intensification (RI) as it may bring huge unexpected damage to lives and properties.

There have been various definitions for RI, in which the rate of 30 kt/24 h was adopted by

Kaplan and DeMaria (2003), Edson and Ventham (2008) (as cited in Mei & Jiang, 2012)

and B. Wang and Zhou (2008). Holliday and Thompson (1979) defined RI as the decrease

in central pressure by 42 hPa/day. Ventham and Wang (2007) defined different thresholds

for RI with respect to the storm intensity, where an increase in maximumwind by 35 knots

and 40 knots over 24 hours defined an RI event for weak and strong storms respectively

on the condition that the TC did not weaken during the past six hours before the RI event.

It was found that the occurrence of RI in a TCmay hint at a high peak intensity. Almost

all TCs which underwent RI ultimately reached typhoon strength or above while most of

them intensified to a super typhoon. Most strong typhoons experienced RI at least once

in their life cycles (Mei & Jiang, 2012). This reflects the cruciality for meteorologists

to understand the principles behind RI as early warnings and prompt precautions could

be made to effectively mitigate the weather hazard which leads to casualties and loss of

properties.

Statistical approaches have been taken to identify the variables conducive for RI to

occur. Mei and Jiang (2012) identified that 12-hour intensity change, sea surface tem-

perature (SST), vertical wind shear (VWS) and other meso-scale atmospheric variables

may influence the occurrence of RI. However, it is noted that satisfying the threshold for

one variable is not indicative of RI as complex physical processes lie behind RI and it re-

quires a simultaneous satisfaction ofmultiple atmospheric variables’ thresholds. Although
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favourable conditions for RI to occur have been qualitatively explained (Hu, Duan, Yu,

Yu, & Du, 2005), conditions where RI is certain to happen have not been found. However,

Mei and Jiang (2012) identified a region over the seas east of the Philippines where RI

was more likely to take place. One may hypothesize if favourable atmospheric conditions

are more likely to occur in these preferred regions such that RI events are more likely to

happen.

Shaiba and Hahsler (2016) combined statistical approaches with machine learning

methods to predict the occurrence of RI. It was shown that various machine learning mod-

els were skillful in detecting RI. Coupling statistical models in forecasting RI with inten-

sity forecast models was also found to improve intensity forecast by taking the probability

of RI into account (Kaplan et al., 2015; Shaiba & Hahsler, 2016).

3 Data set

The ECMWF EPS TC data was studied in this project. The data covers TC over the

western North Pacific (north of the Equator, 100°to 180°E) from January 1, 2015 to August

3, 2019. The data includes forecasts of the TC intensity (minimum pressure and maximum

wind at the centre) of the 51 ensemblemembers, the ensemblemean latitude and longitude,

the base time and the forecast lead time. There were two EPS runs every day at 00 and 12

UTC respectively. The forecast data are in 6-hour intervals, reaching a maximum range

of 240 hours. A total of 121 TC cases with 24953 base time-lead time pairs are included.

Among the 121 cases, a quarter was randomly chosen as the verification set and the

rest remained as the training set for the proposed model. The two groups of TC were

tabulated in Tables 1 and 2 below respectively.

In evaluating the EPS and our proposed model performances, Hong Kong Observa-

tory’s (HKO) best track (BT) intensity was adopted as the ground truth.

The below plot shows that the EPS mean has been generally underestimating the max-

imum wind of TCs.
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Figure 1: ECMWF EPS Mean vs HKO BT Intensity (All TC cases)

The number of forecast samples for different lead hour ranges and best track maximum

wind distribution are shown in Figures 2 and 3 below.
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Training Set

TCID Intensity TC Name TCID Intensity TC Name TCID Intensity TC Name

1502 Super T Higos 1607 TS Chanthu 1723 T Damrey

1503 TS Bavi 1610 ST Lionrock 1724 TS Haikui

1504 Super T Maysak 1615 TD Rai 1802 TS Sanba

1505 TS Haishen 1616 ST Malakas 1803 Super T Jelawat

1506 Super T Noul 1617 ST Megi 1804 TS Ewiniar

1507 Super T Dolphin 1618 Super T Chaba 1805 STS Maliksi

1509 Super T Chan-hom 1619 TS Aere 1806 TS Gaemi

1510 T Linfa 1620 Super T Songda 1807 T Prapiroon

1511 Super T Nangka 1622 Super T Haima 1810 STS Ampil

1512 T Halola 1623 T Meari 1811 STS Wukong

1513 Super T Soudelor 1624 TS Ma-on 1812 T Jongdari

1514 TS Molave - TD TD1212 1813 T Shanshan

1515 Super T Goni 1626 Super T Nock-ten 1814 TS Yagi

1516 Super T Atsani - TD TD0108 1816 STS Bebinca

1517 ST Kilo - TD TD0414 1817 TS Hector

1518 STS Etau 1702 STS Merbok 1818 TS Rumbia

1519 TD Vamco 1703 STS Nanmadol 1819 ST Soulik

1521 Super T Dujuan 1705 Super T Noru 1820 ST Cimaron

1522 ST Mujigae 1707 TS Roke 1821 Super T Jebi

1523 STS Choi-wan 1711 TS Nalgae 1822 Super T Mangkhut

1524 Super T Koppu 1712 ST Banyan 1824 Super T Trami

1525 Super T Champi 1713 Super T Hato 1825 Super T Kong-rey

1526 Super T In-fa 1716 STS Mawar 1827 TD Toraji

1527 ST Melor 1717 TD Guchol 1828 T Man-yi

1601 Super T Nepartak 1718 Super T Talim 1829 STS Usagi

1602 TS Lupit 1719 ST Doksuri - TD TD1225

1603 STS Mirinae - TD TD1009 1902 Super T Wutip

1604 T Nida 1720 ST Khanun 1903 TD Sepat

1605 STS Omais 1721 Super T Lan 1904 TS Mun

1606 TS Conson 1722 T Saola 1907 TS Wipha

Table 1: Tropical Cyclones in Training Set
15



Verification Set

TCID Intensity TC Name TCID Intensity TC Name TCID Intensity TC Name

1501 T Mekkhala 1701 TD Muifa 1727 T Tembin

1508 TS Kujira 1704 STS Talas 1801 TS Bolaven

1520 ST Krovanh 1706 TS Kulap 1808 Super T Maria

1608 TS Dianmu 1708 TS Sonca 1809 TS Son-Tinh

1609 STS Mindulle 1709 T Nesat - TD TD0721

1611 TS Kompasu 1710 TS Haitang 1815 STS Leepi

1612 ST Namtheun 1714 STS Pakhar - TD TD0823

1613 TD Malou 1715 T Sanvu 1823 TS Barijat

1614 Super T Meranti - TD TD0923 1826 Super T Yutu

1621 Super T Sarika 1725 TS Kirogi

1625 STS Tokage 1726 TS Kai-tak

Table 2: Tropical Cyclones in Verification Set

Classification Maximum 10-minute mean wind near the centre

km/h knots

Tropical Depression (TD) 41-62 22-33

Tropical Storm (TS) 63-87 34-47

Severe Tropical Storm (STS) 88-117 48-63

Typhoon (T) 118-149 64-80

Severe Typhoon (ST) 150-184 81-99

Super Typhoon (Super T) ≥185 ≥100

Table 3: HKO Classification of Tropical Cyclones
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Figure 2: Number of samples in the ECMWFEPS TC dataset in January 1, 2015 to August

3, 2019

Figure 3: BT intensity distribution of the ECMWF EPS TC dataset in January 1, 2015 to

August 3, 2019
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4 Methodology

The 5th, 25th, 50th, 75th and 95th percentiles of the 51 ensemble members, in terms of

pressure and maximum wind, were calculated respectively and were adopted to be among

the predictors of the maximum wind of the TC.

A total of 15 features derived from ECWMFEPS forecast were chosen to be predictors

of the maximum wind of TC (see Table 4 below).

Abbreviation Predictor

ENS_MEAN_LAT Ensemble Mean Latitude

ENS_MEAN_LON Ensemble Mean Longitude

ENS_MEAN_PRESSURE Ensemble Mean Central Pressure

ENS_MEAN_WIND Ensemble Mean Maximum Wind

FCST_HR Lead Time (Hour)

PRESSURE_0.05 5th Percentile Central Pressure

PRESSURE_0.25 25th Percentile Central Pressure

PRESSURE_0.5 50th Percentile Central Pressure

PRESSURE_0.75 75th Percentile Central Pressure

PRESSURE_0.95 95th Percentile Central Pressure

WIND_0.05 5th Percentile Maximum Wind

WIND_0.25 25th Percentile Maximum Wind

WIND_0.5 50th Percentile Maximum Wind

WIND_0.75 75th Percentile Maximum Wind

WIND_0.95 95th Percentile Maximum Wind

Table 4: Predictors Used in Formulation of XGBoost Model

In pursuit of a reduction in model complexity, we sought to identify features which

were considered important by the model and to retain only the most significant features

in the model. A simple trial model was first built by including all features as predictors.

The Python version XGBoost Regressor model was built on a computer platform loaded

with a GeForce® GTX 1080 Ti graphic card.
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For simplicity, all parameters were set to default except the number of gradient boosted

trees (n_estimators) and the maximum tree depth for base learners (max_depth) which we

varied to optimize the model.

In the first trial we adopted the values of n_estimators = 100 and max_depth = 5 to

train the model using the training set data. Next, the built-in plot_importance function was

used to obtain features’ importance based on the fitted trees. Each feature’s importance

was calculated based on the average gain of splits which used the feature.

After obtaining the importance of each feature, the model was used to predict the

maximum wind of TCs in the verification set. The results were verified against the HKO

BT intensity using the RMSE metrics:

RMSE =

√√√√ n∑
i=1

(v̂i − vi)2

n
(12)

To account for the general time dependence of the forecast accuracy, each forecast was

categorized into lead time bins before calculating the RMSE value for each bin.

We trained the model again with the least important feature identified by XGBoost

being removed from the set of predictors with other parameters unperturbed. The RMSE

values were re-computed with the new set of forecast data. The above forecast procedure

was repeated with a sequential removal of less important features according to the ranking

depicted by XGBoost until only one most important feature remained as the sole predictor.

We would expect the model performance to remain steady for the first few removals of

features as these predictors may not contributemuch to the forecast accuracy and introduce

model complexity. As the set of predictors continued to shrink, wewould expect themodel

performance to deteriorate, which would serve as a signal to keep the remaining features

in the model.

As we determined the final set of predictors used in the model, we finally proceeded

to vary the values of n_estimators and max_depth to determine the best pair of values for

the model.
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Figure 4: ECMWF EPS Forecast Mean Error (Verification Set)

5 Results

Predictors have been found to have different importances in the XGBoost model. We

selected the important features to remain in the model. To generate more accurate and

realistic forecasts for TCs of different strengths, we developed a consensus model with

the combination of two individual XGBoost models. The consensus model was found to

outperform the EPS.

5.1 ECMWF EPS

As shown in Figure 4, the EPS has underestimated the intensities of TCs. The underesti-

mation exists over all forecast ranges and the negative bias is most significant for T+72h

and T+84h forecasts.

5.2 Feature Importance

The gain method was adopted to find the feature importance. The set of predictors as listed

in Table 4 demonstrated different importance in the XGBoost model. The 95th and 75th
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Figure 5: Feature Importance

percentiles of EPS wind members dominate the contribution, followed by the forecast lo-

cation and some “stronger” EPS members. “Weaker” EPS members and ensemble means

generally contribute little to the model, with ensemble mean wind and pressure being the

least contributors.

Having the set of predictors sequentially removed from the model according to their

ranking in the XGBoost feature importance, the forecast errors vary as a new model was

trained up each time. The result is shown in Figure 6 below.
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Figure 6: Forecast RMSE for Different Lead Time Hours upon Sequential Feature Re-

moval

The leftmost column indicates the result when none of the predictors were removed.

The rightmost column shows the result when WIND_0.75, the second most important

feature was removed and the WIND_0.95 remained as the only predictor. We note that

the forecast errors for all lead time hours remain stable when the first few less important

predictors were removed. The forecast error starts to steadily increase when FCST_HR

or ENS_MEAN_LON was removed for most lead time hours. Hence, we determine that

the seven most important predictors are to be kept in the model, including FCST_HR and

those that are more important features (Table 5).

Abbreviation Predictor

ENS_MEAN_LAT Ensemble Mean Latitude

ENS_MEAN_LON Ensemble Mean Longitude

FCST_HR Lead Time (Hour)

PRESSURE_0.05 5th Percentile Central Pressure

WIND_0.5 50th Percentile Maximum Wind

WIND_0.75 75th Percentile Maximum Wind

WIND_0.95 95th Percentile Maximum Wind

Table 5: Final Predictors Used in the XGBoost Model
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5.3 Training Parameters

The values of n_estimators andmax_depthwere varied. In the initial trial with n_estimators

= 100 and max_depth = 5, we observed that the XGBoost model often overestimated the

intensities of weaker TCs (e.g. TS Dianmu in Figure 7a), while the processes of RI and

peak intensities of strong TCs (e.g. Super T Maria in Figure 7b) were often successfully

captured.

We propose that the forecast performance for stronger TCs and weaker TCs should be

analyzed separately. We chose 63.8 knots (equivalent to the threshold of Beaufort Scale

force 12, hurricane force) as the boundary. The value was chosen in light of the sample

sizes in the verification set (about one third below 63.8 knots and two-thirds above 63.8

knots). The forecast performance under the variations of n_estimators and max_depth is

shown in Figure 8.

As highlighted in the figure, the minimum RMSE occurs at significantly different val-

ues of n_estimators and max_depth. For the weaker TC category, the best pair is at about

n_estimators = 15 and max_depth = 6. Whereas for the stronger TC category the best pair

is at about n_estimators = 400 and max_depth = 4. Finer categories are not suggested as

to ensure a sufficiently large sample size in each category.
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(a) Tropical Storm Dianmu (1608); Base Time 2016-08-17 12 UTC

(b) Super Typhoon Maria (1808); Base Time 2018-07-05 00 UTC

Figure 7: XGBoost Model Initial Trial (n_estimators = 100 andmax_depth = 5), ECMWF

EPS Mean and 95th Percentile Forecast against HKO BT Intensity (Actual)
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Figure 8: Forecast RMSE for Different n_estimators and max_depth Specifications

5.4 Consensus XGBoost Model

We looked for a solutionwhich retains its ability to capture RI events and intensity peaks of

stronger typhoons, while being able to produce more accurate forecasts for weaker storms.

Recognizing that WIND_0.95 is the most important feature, we propose a “consensus”

model, adopting WIND_0.95 as the decision node.

Two XGBoost forecast models were simultaneously and independently trained. One

of them was trained with n_estimators = 15 and max_depth = 6 (“Low” model) while

the other was trained with n_estimators = 400 and max_depth = 4 (“High” model). Both

models take in the predictors in Table 5 and produce amaximumwind forecast value. Each

forecast data is considered independently. If WIND_0.95 reports a forecast reaching 63.8

knots, the forecast value from the “High” model is adopted as the final output. Otherwise,

the forecast value from the “Low” model is adopted.

25



Figure 9: Schematic Diagram of the “Consensus” XGBoost Model

It should be noted that for each set of forecast of the same base time, the choice of

“High” or “Low” model may vary between lead time hours depending on the value of

WIND_0.95 at each lead time.

The forecast performance of the Consensus XGBoost Model and selected percentiles

of ECMWF EPS is shown in Figure 10 and 11 below. It was also found that the Consensus

model generally performs better than solely either the “High” or “Low”model (Figure 12).

Revisiting the forecast samples, we found that the intensity overestimation for weaker

TCs is eased (e.g. TSDianmu in Figure 13a as compared to Figure 7a) while the consensus

model is still able to capture RI events and intensity peaks of severe TCs (e.g. Super T

Maria in Figure 13b as compared to Figure 7b).
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(a) Forecast RMSE

(b) Forecast MAE

Figure 10: Forecast Error of Consensus XGBoost Model (XGB), ECMWF EPS 95th

(0.95), 75th (0.75), Median, 25th (0.25) and Mean Members
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Figure 11: Forecast Mean Error of Consensus XGBoost Model (XGB), ECMWF EPS

95th, 75th, Median, 25th, Mean and Control Members

Figure 12: Forecast RMSE of Consensus, “Low” (6-15) and “High” (4-400) XGBoost

Model
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(a) Tropical Storm Dianmu (1608); Base Time 2016-08-17 12 UTC

(b) Super Typhoon Maria (1808); Base Time 2018-07-05 00 UTC

Figure 13: Consensus XGBoost Model, ECMWF EPS Mean and 95th Percentile Forecast

against HKO BT Intensity (Actual)
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6 Discussion

Most TCs at typhoon strength or above were underestimated by ECMWF EPS as shown

in Figure 1. This is also reflected in the preference of predictors in the XGBoost model

(XGB), which considers stronger EPS percentiles as more important features. Systematic

negative biases exist in ECMWF EPS even for the 75th percentile member. As the storm

strength increases, the underestimation becomes more prominent. As explained by Marks

(2015), strong typhoons attain a higherRo so that cyclostrophic balance may represent the

core structure better than the gradient wind balance. The maximum wind usually occurs

at a small area around the eyewall. As suggested by Andersson and Hollingsworth (1988),

these intense small-scale features may not be acknowledged by NWP models and may be

rejected, resulting in a poor representation in severe storm structures.

The forecast performance analysis in Figure 10 shows that the Consensus XGB out-

performs ECMWFEPS in all lead time hours. Among the EPSmembers, higher percentile

members generally produce better forecasts than lower percentile members. The forecast

error increases with the lead time as the predictability decreases due to initial errors. It is

interesting to note that the forecast error saturates at T+84h for all but the 95th percentile

member, which was surpassed by lower percentile members. We do not presume a reason

behind this saturation, and we do not discuss it in detail in this paper as we aim at analyzing

the performance of XGB. Nevertheless, XGB’s dependence on lead time could possibly

relate to this saturation, that XGB’s forecast might be less influenced by the 95th percentile

EPS member at longer lead time ranges. As the model training adopts the squared error

loss function, it is justifiable that WIND_0.95 ranks top in the XGB feature importance as

its forecast RMSE is the lowest among other percentiles adopted as predictors in the first

96 hours of forecast, followed by lower percentile members.

In Figure 8we can observe that significantly different values ofmax_depth and n_estimators

are preferred by weak and strong storms respectively. As we train up the XGBmodel with

increasing values of n_estimators, the XGBmodel tends to produce a forecast with higher

maximumwind regardless of the values of predictors. This could possibly be explained by

the design of XGBoost in which later trees are produced to correct the errors of previous

trees. As violent TCs are extreme cases and they constitute a small fraction among all TC
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cases, the initial weak learners tend to align to the majority, i.e. the less violent storms. As

more trees are added to the model, the later trees absorb the residual from previous trees

and attempt to produce a better forecast. Due to the adoption of the squared error loss

function, the errors of extreme cases amplify, shifting the forecast to higher wind speed

ranges.

With the introduction of the Consensus XGB model, we are able to generate more

accurate forecasts for weaker TCs without sacrificing the model’s ability to alert major

TCs and RI events. Yet, the Consensus model might have the shortcoming that an abrupt

soar or plunge could be exhibited near the boundary of 63.8 knots when the TC undergoes

gradual intensification from STS to T or weakening from T to STS. We suggest a blending

technique, where two or more models are trained simultaneously with different parameters

as in our Consensus model, while the weighting of individual models in the final forecast

V is a non-binary function of some parameters (e.g. WIND_0.95):

V =
n∑
i

xivi (13)

In the current Consensus model, vi is the forecast wind speed of the “Low” or “High”

model while xi is a binary function depending on the value ofWIND_0.95. If a non-binary

function for xi with proper normalization is adopted, it is anticipated that the intensity

forecast for all intensity ranges could be optimized.

An important message conveyed by the XGBoost feature importance function is the

significance of latitude and longitude on the storm intensity. We will study three super

typhoon cases forecast by the XGB model below.

The first case is Super Typhoon Maria (1808). As demonstrated in Figure 13b in

Section 5, Maria underwent RI from July 5 - 6, 2018. The XGB model forecast, based

on the 00 UTC run on July 5, 2018 of ECMWF EPS, successfully captured the RI event,

though being 6 hours ahead of its occurrence. Meanwhile, the 95th percentile EPSmember

only forecast a gradual intensification. This behaviour of the XGB model could not be

explained by the intensity predictors.

Another case is Super Typhoon Yutu (1826). Yutu was one of the strongest typhoons

in 2018 and underwent RI from October 22 - 24, 2018, reaching a peak intensity of 135
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knots. As shown in Figure 14a, XGB model forecast a significant intensification of Yutu,

yet subpar to the RI standard. It forecast a peak intensity close to the actual peak, al-

though delayed for 42 hours. The 95th percentile EPS member forecast a more moderate

intensification, reaching only the upper boundary of a severe typhoon.

Super Typhoon Meranti (1614) was the strongest typhoon in 2016. As shown in Fig-

ure 14b, Meranti experienced prolonged RI from September 10 - 12, 2016. During the

formation stage of the storm, XGB forecast a peak intensity of about 95 knots while the

actual peak intensity was 135 knots. For the corresponding time period, the 95th percentile

EPS member forecast merely about 70 knots, yielding a substantial absolute error of 65

knots. At the later stage of the run, the 95th percentile EPS member predicted Meranti to

sustain its intensity as a typhoon. In reality, Meranti made landfall over Fujian on Septem-

ber 14 and rapidly weakened and dissipated on September 15. XGB was able to capture

the weakening trend though it forecast a slower weakening process.

The above cases indicate that the EPS members influence could not fully explain the

behaviour of the XGB model and the role of latitude and longitude was investigated.
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(a) Super Typhoon Yutu (1826); Base Time 2018-10-22 12 UTC

(b) Super Typhoon Meranti (1614); Base Time 2016-09-10 00 UTC

Figure 14: Consensus XGBoost Model, ECMWF EPS Mean and 95th Percentile Forecast

against HKO BT Intensity (Actual)
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Figure 15a shows the distribution of training cases reaching 100 knots or above. It

should be noted that the coordinates reflect the ensemble mean latitude and longitude

and are not necessarily equal to the BT coordinates. Furthermore, the same TC may be

counted multiple times due to multiple EPS runs. This is to reflect that the XGB model

includes the forecast data from all runs in the formulation of regression trees. Figure 15b

shows the Gaussian Kernel-Density Estimate (KDE) based on the distribution in Figure

15a. It is observed that high densities of data points in the reddish regions in Figure 15b,

which correspond to the seas east of the Philippines. This finding resembles the findings

in identifying favourable regions for RI by Mei and Jiang. Although the two regions

encompass different quantities, they are likely to be correlated as RI events may hint a

high peak intensity. The reason for this favourable region’s existence is not known and it

is worth further investigation.

This region, however, could probably explain the behaviour of the XGB model in the

above super typhoon cases. Figure 15b is overlaid with the ensemble mean forecast tracks

of Maria, Yutu and Meranti in corresponding EPS runs in Figures 13b, 14a and 14b. The

three typhoons were forecast to move in a generally northwesterly track as they passed

through the reddish region in the forecast period.

As Maria was forecast to move into the reddish region, XGB predicted an abrupt in-

tensification of 55 knots in 24 hours while WIND_0.95 was falling far behind the trend.

XGB then forecast a slow weakening trend of Maria as it was forecast to gain in latitude

and depart from the reddish region. The difference between the forecasts of XGB and

WIND_0.95 narrowed as Maria transited to the bluish region where the high intensity

data was less dense.

Meranti was in the reddish region in the initial stage of the EPS run as shown in Figure

15b. XGB forecast a significant intensification as it moved across the region. As Mer-

anti was forecast to leave the region, XGB forecast a general weakening trend, whereas

WIND_0.95 forecast a continuous slow intensification, hence narrowing the gap in fore-

cast intensity.

For Super TyphoonYutu, XGB captured the intensification trend better thanWIND_0.95.

XGB forecast Yutu’s intensity to exceed 100 knots as it was forecast to move into the
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reddish region. The XGB forecast intensity continued to climb and maintain a violent

intensity until Yutu’s ensemble mean track recurved and entered the bluish region where

the XGB forecast intensity started to drop. While the EPS forecast Yutu to continue to

weaken at the final period of the forecast, it is interesting to note that there was a final

intensification in the XGB forecast, which coincided with the time of re-entrance into the

reddish region when it took on the abnormal southwesterly track at the end of the forecast

period.

Hence, wewould conclude that the ensemblemean latitude and longitude influence the

XGB forecast intensity likely in a way that corrects the forecast value based on EPS wind

predictors through assessing the past intensity distribution in the vicinity of the forecast

track.
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(a) Scatter Plot of Cases with BT Intensity Reaching 100 knots or above in Training Set

(b) Gaussian Kernel-density Estimate of 15a; Ensemble Mean Track of Super T Maria, Yutu and

Meranti at Respective Base Time Shown in Figures 13b, 14a and 14b

Figure 15
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However, this result also implies that the forecast accuracy of the XGBmodel is highly

dependent on the ECMWF EPS forecast. The XGB model is unlikely to produce a good

forecast if the input predictors are erroneous.

The EPS forecast for Meranti was mediocre as it did not predict Meranti to intensify

into a super typhoon. The time of peak intensity was also erroneous, lagging behind the

actual peak by 24 hours. XGB was better than EPS in the run in forecasting the trend of

intensity change but the absolute error at its actual peak was still as large as 40 knots.

In the case of Maria, the XGB forecast for the first 72 hours was close to the actual

intensity trend, yet it captured neither the second intensity peak nor the final RW stage.

The EPS ensemble mean track was more northerly than the actual track. The mean track

forecast Maria to make landfall south of Shanghai at night on July 11 and to skirt the coast

of eastern China, before recurving to the Yellow Sea towards Korea. However, Maria

finally made landfall over Fujian in the morning on July 11 and tracked deep inland and

dissipated. The slow weakening trend forecast by XGB as depicted in Figure 13b was

likely to be based on the recurving track, hence it was unable to capture the correct trend

at the later forecast period.

A final case to mention is Yutu. The ensemble mean track on October 22, 2018 12

UTC is shown in Figure 17a. There was a recurvature followed by an uncommon twist

to the southwest. The actual track of Yutu, however, was a westerly track across Luzon

that turned northwards and finally dissipated in the South China Sea (SCS). It should be

noted that the ensemble mean track was in fact inconclusive of any scenario forecast by the

EPS members. As depicted in Figure 17b, the EPS members diverged into two clusters,

with one forecasting a recurvature track and the other forecasting a westerly track. The

ensemble mean track twisted to the southwest at the final stage as some EPS recurvature

members died out, shifting the ensemble mean towards the westerly cluster. Such track

is obviously a poor representation of the storm development, yet the XGB model appar-

ently considered the track in its prediction and forecast an incorrect strengthening trend

on October 31.
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Figure 16: ECMWF EPS Ensemble Mean Track (Blue) and HKO Best Track (Black)

of Super Typhoon Maria (1808); Base Time 2018-07-05 00 UTC (Credit: Hong Kong

Observatory)
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(a) ECMWF EPS Ensemble Mean Track (Blue) and HKO Best Track (Black) of Super Typhoon

Yutu (1826); Base Time 2018-10-22 12 UTC (Credit: Hong Kong Observatory)

(b) ECMWF EPS Ensemble Member Tracks of of Super Typhoon Yutu (1826); Base Time 2018-

10-22 12 UTC (Credit: Hong Kong Observatory)

Figure 17
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Another limitation of the XGB model is that it might not be able to detect extreme

cases. As the XGB forecast is based on past forecast and actual data, the forecast output

is likely to be limited within the range of the past actual data. If an extremely violent

typhoon formed where the forecast data was out of the past data range, XGB might not be

able to extrapolate to forecast an extreme intensity.

The behaviour of the XGB model under extreme cases is not yet known. Looking

ahead, we anticipate that by including more forecast data as TCs continue to form, the

behaviour of the XGB model could be better understood. We also expect that the forecast

performance of XGB will improve as more data is included as training cases. We also

suggest a greater ensemble of predictors such as other NWP ensemble or deterministic

models to be included in themachine learningmodel. Whilemore features are being added

to the model, one should note that there are scheduled updates in NWP models and their

behaviours might change. XGBoost’s sensitivity to each feature may also consequently

change and the list of predictors and the feature importance should be updated on a timely

basis to adapt to the changes in the predictors’ behaviours.

7 Conclusion

In this paper, we presented a decision-tree-based machine learning method, namely XG-

Boost, to forecast the maximumwind of tropical cyclones based on ECMWFEPS forecast

data. The forecast data includes TCs in the western North Pacific in January 1, 2015 to

August 3, 2019. We found out that ECWMF EPS systematically underestimated the inten-

sity of tropical cyclones, especially stronger TCs. The XGBoost model identified stronger

percentiles ECWMFEPSmembers as important features for its forecast. It was also found

that the forecast hour and location of the TC may influence the forecast of the XGBoost

model.

We developed a Consensus XGBoost model which is based on two different XGBoost

models with different training parameters due to their differential behaviours in forecast-

ing TCs with different intensities. We showed that the Consensus model was in general

performing better than individual models. It also attained a smaller forecast error than
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ECMWF EPS. The XGBoost model has also the potential to capture RI cases.

We presented three super typhoon cases, namely Maria, Yutu and Meranti to discuss

the behaviours of the XGBoost model. Except the ECMWF EPS wind members being

major contributors, we discovered some regions over the Pacific might be beneficial to

the development of strong TCs and was consistent with the findings of previous research.

We believe that XGBoost might have the potential to identify regions which favour strong

TC development and would accordingly adjust its forecast.

Finally, we discussed the limitations of the XGBoost model, mainly due to the high de-

pendency on ECMWF EPS forecast. We recommend a further optimization on the model

parameters and suggest including other NWPmodels to be predictors in the hope of further

improvement in the model’s forecast performance.

The results of this research showed that machine learning models have the potential to

improve intensity forecast in tropical cyclones. A feature of this method is that it combines

real-time forecast with analogical methods. It could learn to forecast better by consider-

ing past experience with similar forecast conditions. We hope this method will pave a

new avenue in tropical cyclone forecast techniques and we look forward to sparking more

research in pursuit of greater forecast accuracy.
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List of Acronyms

BT Best Track

ECMWF European Centre for Medium-Range Weather Forecasts

EPS Ensemble Prediction System

HKO Hong Kong Observatory

KDE Kernel-density Estimate

JMA Japan Meteorological Agency

MAE Mean Absolute Error

NWP Numerical Weather Prediction

RI Rapid Intensification

RMSE Root-mean-square Error

RW Rapid Weakening

SCS South China Sea

SST Sea Surface Temperature

ST Severe Typhoon

STS Severe Tropical Storm

Super T Super Typhoon

T Typhoon

TC Tropical Cyclone

TD Tropical Depression

TS Tropical Storm

UTC Coordinated Universal Time
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VWS Vertical Wind Shear

XGB XGBoost (Extreme Gradient Boosting)
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