The Max-Planck-Institute Global Ocean/Sea-Ice Model
MPI-OM

Patrick Wietzel, Helmuth Haak, Johann Jungclaus and Ernst Maier-Reimer

Max-Planck-Institute for Meteorology
Bundestrasse 53
20146 Hamburg, Germany
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>1</td>
</tr>
<tr>
<td>1. History and Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2. Using MPI-OM</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Input Files</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Grid Files</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2 Restart File</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3 Forcing Fields</td>
<td>6</td>
</tr>
<tr>
<td>2.1.4 Namelist</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Output Fields</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Timeseries</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Quickstart Examples</td>
<td>9</td>
</tr>
<tr>
<td>2.4.1 Run Script</td>
<td>9</td>
</tr>
<tr>
<td>2.5 Parallel Computing with MPI and OpenMP</td>
<td>17</td>
</tr>
<tr>
<td>2.5.1 Running the OpenMP version</td>
<td>17</td>
</tr>
<tr>
<td>2.5.2 Running the MPI version</td>
<td>17</td>
</tr>
<tr>
<td>2.5.3 MPI Examples</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Compiling the Model</td>
<td>20</td>
</tr>
<tr>
<td>2.6.1 Conditional Compilation</td>
<td>22</td>
</tr>
<tr>
<td>3. Creating a New Setup</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Creating the Grid</td>
<td>27</td>
</tr>
<tr>
<td>3.1.1 anta</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2 arcgri</td>
<td>28</td>
</tr>
<tr>
<td>3.1.3 BEK</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Creating the Input</td>
<td>29</td>
</tr>
</tbody>
</table>
3.2.1 INISAL and INITEM .. 29
3.2.2 SURSAL and SURTEM 30
3.2.3 runoff.obs and runoff.pos 30
3.3 Interpolate the Forcing 30
3.4 Modifications in the Source 31

4. Numerical Background 33
4.1 Ocean Primitive Equations 33
4.2 Ocean Subgridscale Parameterizations 34
4.2.1 Slope Convection 35
4.2.2 Eddy Viscosity 36
4.3 Model Grid .. 38
4.3.1 Horizontal discretization 38
4.3.2 Vertical discretization 40
4.3.3 Curvilinear Coordinate System 41
4.4 Bulk Formulae .. 43
4.5 OMIP Atmospheric Forcing 45
4.6 NCEP/NCAR Atmospheric Forcing 46

5. Time Stepping ... 47
5.1 Time stepping method 47
5.2 Timestepping in the Model 48
5.2.1 oother.f90 .. 48
5.2.2 ocwind.f90 52
5.2.3 ocice.f90 .. 52
5.2.4 ocmodmom.f90 53
5.2.5 ocbarp.f90 .. 53
5.2.6 occlit.f90 ... 53
5.2.7 bartim.f90 ... 53
5.2.8 troneu.f90 ... 53
5.2.9 ocvtro.f90 ... 53
5.2.10 ocvtot.f90 .. 54
5.2.11 ocuad.f90 and ocvad.f90 54
Contents

8.1.9 diagnosis.f90 .. 74
8.1.10 nlopps.f90 ... 74
8.2 Appendix B List of Variables 75
 8.2.1 Model Constants and Parameters 75
 8.2.2 Global Parameters 76
 8.2.3 Model Variables 76
8.3 Appendix C File Formats 79

References ... 80
1. INTRODUCTION

The Hamburg Ocean Model, MPI-OM is the successor of the Hamburg Ocean Primitive Equation (HOPE) model and has undergone significant development in recent years. Most notable is the treatment of horizontal discretization which has undergone transition from a staggered E-grid to an orthogonal curvilinear C-grid. The treatment of subgrid-scale mixing has been improved by the inclusion of a new formulation of bottom boundary layer (BBL) slope convection, an isopycnal diffusion scheme, and a Gent and McWilliams style eddy-induced mixing parameterization.

The Hamburg Ocean Model, MPI-OM, is an ocean general circulation model (OGCM) based on the primitive equations with representation of thermodynamic processes. It is capable of simulating the oceanic circulation from small scales (oceanic eddies) to gyre scales, in response to atmospheric forcing fields. For an application on horizontal scales smaller than about 1 km the hydrostatic assumption is no longer valid and the model must in parts be reformulated. The use of an ocean circulation model requires a comprehensive understanding of the ocean physics and the numerical formulation. It is not recommended to use this model as a black box. Many physical processes in the ocean are still not very well understood and are therefore only crudely parameterized. Each new application requires a new consideration of how to specify model parameters, especially coefficients for eddy viscosity and diffusivity. The model is thought to be a framework into which new ideas concerning parameterizations or forcing mechanisms might easily be incorporated. This manual gives a description of the MPI-OM model, in order to help potential users to run the model and to acquire a understanding of the model physics and numerics.

This manual refers to release 1.1 of MPI-OM.
2. USING MPI-OM

This chapter shows how to set up and run the model with a given configuration and resolution. It will also deal with compiling and running the model on different computational platforms.

2.1 Input Files

2.1.1 Grid Files

Grid definition files store information about the model grid and bathymetry. To generate a well working setup needs considerable expertise and requires extensive evaluation. Most users work with exiting, thoroughly tested, model setups. The tools to generated a specific setup are described in chapter 3.1. File formates are described in 8.3 The following grid definition files are needed for MPI-OM:

1. **anta**
 Geographical positions (longitudes and latitudes) of the center and of the edges of the grid cells. Format is EXTRA.

2. **topo**
 Model topography. Format is ASCII.

3. **arcgri**
 Grid point separation. Format is EXTRA.

4. **BEK**
 ASCII file which is used for online diagnostics. It stores the masks for the major ocean basins using a number-code from 0 to 9.

5. **SURSAL and SURTEM**

 Climatological values of surface salinity and temperature from Steele et al. (2001), interpolated onto the model grid. Surface salinity and temperature can be restored with a constant relaxation time which is set in the namelist (Table 2.1). Format is EXTRA. Alternatively, a
global hydrography from Gouretski and Koltermann (2004) is available.

6. **INITEM and INISAL** Three dimensional data of potential temperature and salinity (Steele et al., 2001), interpolated onto the model grid. Starting value for the initialization of MPI-OM. Format is EX-TRA. Alternatively, a global hydrography from Gouretski and Koltermann (2004) is available.

7. **runoff_obs**
 Monthly mean river discharge data (currently for 53 positions) in EXTRA format.

8. **runoff_pos**
 Longitudes and latitudes of the river discharge positions in EXTRA format.

Alternatively to runoff_obs and runoff_pos, river discharge information can be supplied as a forcing field. Please see section 2.1.3 and table 2.5.

2.1.2 Restart File

The current status of the model at the end of a run is stored in the ocean restart file Z37000 (IEEE 8byte EXTRA Format). Parameter ISTART in the namelist 2.1 defines if a run is started from a climatological distribution of temperature and salinity (INISAL and INITEM, see section 2.1 and 3.2) of from an existing restart file. The file contains all scalar and vector variables for the ocean and the sea-ice model.

2.1.3 Forcing Fields

Forcing data sets are provided as daily mean fields. The model is forced with heat, freshwater and momentum fluxes, interpolated onto the model grid. Popular is, for example, the climatological 360 day forcing compiled by the OMIP project, or the forcing generated from the NCEP/NCAR reanalysis (Kalnay, 1996), which starts in 1948. The daily 2 m air and dew point temperatures, precipitation, cloud cover, 10 m wind speed and surface wind stress are taken without modification. Dew point temperature T_{Dew} is derived from specific humidity q and air pressure p according to Oberhuber (1988). Format of the forcing fields is EXTRA. If you are interested in compiling your own forcing, please see section 3.3

1. **GICLOUD**
 Total cloud cover
2.2. Output Fields

2. GIPREC
 Precipitation

3. GISWRAD
 Solar radiation

4. GITDEW
 Dew point temperature

5. GITEM
 Surface temperature

6. GIU10
 10 m wind speed

7. GIWIX
 zonal (along index i) wind stress

8. GIWIY
 meridional (along index j) wind stress

9. GIRIV
 river discharge data (optional)

2.1.4 Namelist

Some important tuning parameters can be set in the namelist OCECTL (ASCII file, table 2.1). The depth levels are defined in DZW; NPROCS defines the number of processors assigned for the MPI parallelization (example in section 2.4).

2.2 Output Fields

MPI-OM generates a large number of output files. Most of them are mean values of ocean properties (temperate, salinity ...). In addition, there is output for mean diagnostic and flux variables, as well as grid, forcing or coupling (ECAHM) information. Time averaging can be daily, monthly or yearly and is controlled by the namelist (see 2.1) variable IMEAN (table 2.1). Output data is selected with CPP switches (see 2.6.1). Each code is written into a separate file named fort.unit according to the unit the file is written to. The file format is EXTRA. At the end of each run a tar file is created from the averaged data files. Mean and diagnostic output is discussed in detail in chapter 7 "Diagnostic and Mean Output”. Tables 7.2 to 7.7 given an overview on all available output codes.
2. Using MPI-OM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GR03</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT</td>
<td>8640.</td>
<td>model time step in seconds</td>
<td>5.2</td>
</tr>
<tr>
<td>CAULAPTS</td>
<td>0.</td>
<td>horizontal biharmonic diffusion coefficient for tracers (T,S)</td>
<td>5.2.17</td>
</tr>
<tr>
<td>CAULAPUV</td>
<td>0.005</td>
<td>horizontal biharmonic diffusion coefficient for momentum (u,v)</td>
<td>5.2.20</td>
</tr>
<tr>
<td>CAH00</td>
<td>1000.</td>
<td>horizontal harmonic diffusion coefficient (isopycnic and GM)</td>
<td>5.2.16,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.2.17, 5.2.19</td>
</tr>
<tr>
<td>DV0</td>
<td>1.E-2</td>
<td>vertical diffusion coefficient for tracers (T,S)</td>
<td>5.2.17</td>
</tr>
<tr>
<td>AV0</td>
<td>1.E-2</td>
<td>vertical diffusion coefficient for momentum (u,v)</td>
<td>5.2.20</td>
</tr>
<tr>
<td>DBACK</td>
<td>1.E-5</td>
<td>minimum setting for vertical tracers (T,S) diffusion</td>
<td>5.2.17</td>
</tr>
<tr>
<td>ABACK</td>
<td>1.E-4</td>
<td>minimum setting for vertical momentum (u,v) diffusion</td>
<td>5.2.20</td>
</tr>
<tr>
<td>CWT</td>
<td>5.E-4</td>
<td>wind mixing coefficient</td>
<td>4.17, 5.2.1</td>
</tr>
<tr>
<td>CSTABEPS</td>
<td>0.030</td>
<td>minimum wind mixing</td>
<td>5.2.1</td>
</tr>
<tr>
<td>CRELSAL</td>
<td>2.0E-7</td>
<td>surface salinity relaxation</td>
<td>4.8, 4.32</td>
</tr>
<tr>
<td>CRELTEM</td>
<td>0.</td>
<td>surface temperature relaxation</td>
<td>4.8</td>
</tr>
<tr>
<td>CDVOCON</td>
<td>0.05</td>
<td>convection coefficient for tracers (T,S)</td>
<td>5.2.1</td>
</tr>
<tr>
<td>CAVOCON</td>
<td>0.0</td>
<td>convection coefficient for momentum (u,v)</td>
<td>5.2.1</td>
</tr>
<tr>
<td>NYEARS</td>
<td>0</td>
<td>Number of simulated years in a run</td>
<td></td>
</tr>
<tr>
<td>NMONTS</td>
<td>1</td>
<td>Number of simulated months in a run</td>
<td></td>
</tr>
<tr>
<td>IMEAN</td>
<td>2</td>
<td>Time averaging of output data</td>
<td>chapter 7</td>
</tr>
<tr>
<td>(3: yearly means, 2: monthly means, 1: daily means)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISTART</td>
<td>2</td>
<td>Start from initial conditions [0/1], standard [2]</td>
<td>441</td>
</tr>
<tr>
<td>I3DREST</td>
<td>1</td>
<td>3-D restoring of temperature and salinity to initial conditions</td>
<td>5.2.18</td>
</tr>
</tbody>
</table>

Tab. 2.1: Parameters of the MPI-OM namelist OCECTL, numbers are examples for a GR03 setup.
2.3 Timeseries

A ASCII file named TIMESER containing time series data for some diagnostic variables is generated in each model time step. The content is described in detail in routine DIAGNOSIS.F90 of the source code. Usually, the TIMESER files from each year are "cat" together to a file named ZEITSER. A Fortran77 program named "plsteig.f" is available which generates a series of plots from one or many ZEITSER files for evaluation and comparison.

2.4 Quickstart Examples

On a PC or Sun workstation, the most simple way to run the model is to put a precompiled MPI-OM executable and all necessary input and forcing files into one directory and start the model executable manually. In this case the model runs only on one processor and there the executable should have been compiled without parallelization options. If you need to compile your own executable, please refer to section 2.6, for more details on parallelization (running on more than one processor), please see section 2.5.

2.4.1 Run Script

In most cases one wants to run several consecutive years, either by repeating a climatological forcing, or by using different forcing fields for each year. In this case a run script takes care of the right forcing, the right parameters in the namelist and the proper labeling of the output.

If you have received the model from CD or the ZMAW CVS server (see 2.6) you will find a shell-script called "prepare_run_mpiom_omip" which helps to set up a runtime environment. It will create directories in the appropriate places and set links to the necessary input and forcing files. It will also create run-script which can serve as an example for your actual script. The script is written for the MPI/DKRZ environment (Hurrikan) and has to be modified to work on other platforms.

Linux and SUN

An example for a LINUX run-script for one processor, GR30 resolution and climatological OMIP forcing is given below. All necessary files are in one folder and the same climatological forcing is used for all years. It is important to note, that binary input and forcing files are double precision with big endian. The same script can be used on a SUN workstation. Sun uses big endian for binary files by default, so no extra settings are necessary.
#!/bin/sh
set verbose
set echo
#
This script is for a simple runtime setup.
with one processor on a Linux PC.
All files are stored in one directory named GR30_$ID
Script is designed for a 20 layer GR30 grid.
#
HOME=/home/patrick ; export HOME
ID=OMIP ; export ID
for intel ifc compiler
F_UFMTENDIAN=big ; export F_UFMTENDIAN
#
at the beginning
#
echo 1 > year.asc
#
Execute 3 times
#
for number in 1 2 3
do
cat > OCECTL << EOF
&NPROCS
nprocx=1
nprocy=1
/
&OCECTL
DT = 8640.
CAULAPTS= 0.
CAULAPUV= 0.005
AUS = 0.
CAH00 = 1000.
DVO = 1.E-2
AVO = 1.E-2
CWT = 5.E-4
CSTABEPS= 0.030
DBACK = 1.E-5
ABACK = 1.E-4
CRELSAL = 2.0E-7
CRELTEM = 0.
CDVOCON = 0.05
CAVOCON = 0.0
NYEARS = 1
NMONTS = 0
IMEAN = 2
&END
&OCEDZW
DZW = 20., 20., 20., 30., 40., 50., 70.,
90., 120., 150., 180., 210., 250., 300.,
400., 500., 600., 700., 900., 1400.
&END
EOF

set -e

for fujitsu lf95 compiler (set read/write to big endian)
ocmod.x -Wl,-T

for intel ifc compiler
./ocmod.x
set +e

Append the timeseries to ZEITSER

```
cat TIMESER >> ZEITSER
```
```
rm TIMESER
```

Append the timeseries to ZEITSER

```
\cp Z37000 Z37000_$YEAR
\cp Z37000 Z38000
```

Rename the output files you want to keep

```
ls -al
mv fort.71 $ID\_tho.ext4
mv fort.72 $ID\_sao.ext4
mv fort.73 $ID\_uko.ext4
mv fort.74 $ID\_vke.ext4
mv fort.79 $ID\_eminpo.ext4
mv fort.82 $ID\_zo.ext4
mv fort.84 $ID\_flum.ext4
mv fort.85 $ID\_pem.ext4
mv fort.86 $ID\_sictho.ext4
mv fort.87 $ID\_sicomo.ext4
mv fort.88 $ID\_sicuo.ext4
mv fort.89 $ID\_sicve.ext4
mv fort.90 $ID\_kcondep.ext4
mv fort.130 $ID\_wu10.ext4
mv fort.131 $ID\_tafo.ext4
mv fort.132 $ID\_fclo.ext4
mv fort.133 $ID\_fpre.ext4
mv fort.134 $ID\_fswr.ext4
mv fort.135 $ID\_ftde.ext4
mv fort.136 $ID\_sicano.ext4
mv fort.137 $ID\_qswo.ext4
```
mv fort.138 $ID_qlwo\.ext4
mv fort.139 $ID_qlao\.ext4
mv fort.140 $ID_qseo\.ext4
mv fort.141 $ID_preco\.ext4
mv fort.142 $ID_amlid\.ext4
mv fort.143 $ID_psiuwe\.ext4
mv fort.144 $ID_avo\.ext4
mv fort.145 $ID_dvo\.ext4
mv fort.146 $ID_wo\.ext4
mv fort.147 $ID_sictru\.ext4
mv fort.148 $ID_sictrv\.ext4
mv fort.149 $ID_txo\.ext4
mv fort.150 $ID_tye\.ext4
mv fort.156 $ID_zmlid\.ext4
mv fort.93 $ID_weto\.ext4
mv fort.94 $ID_gila\.ext4
mv fort.97 $ID_giph\.ext4
mv fort.96 $ID_depto\.ext4
mv fort.151 $ID_dlxp\.ext4
mv fort.152 $ID_dlyp\.ext4
mv fort.153 $ID_deuto\.ext4
mv fort.154 $ID_dlxu\.ext4
mv fort.155 $ID_dlyu\.ext4
mv fort.245 $ID_wtmix\.ext4
mv fort.246 $ID_wgo\.ext4
mv fort.159 $ID_bolx\.ext4
mv fort.160 $ID_boly\.ext4
mv fort.247 $ID_dqswo\.ext4
mv fort.248 $ID_dqlwo\.ext4
mv fort.249 $ID_dqseo\.ext4
mv fort.250 $ID_dqlao\.ext4
mv fort.251 $ID_dqtho\.ext4
mv fort.252 $ID_dqswi\.ext4
mv fort.253 $ID_dqlwi\.ext4
mv fort.254 $ID_dqsei\.ext4
mv fort.255 $ID_dqthi\.ext4
mv fort.257 $ID_dticeo\.ext4
mv fort.157 $ID_tmceo\.ext4
mv fort.158 $ID_tmcdto\.ext4
mv fort.303 $ID_ukomf1\.ext4
mv fort.304 $ID_vkemf1\.ext4
mv fort.305 $ID_rivrun\.ext4

#
tar and move the output and the restart files
#

tar cvf $YEAR\.tar Z37000_$YEAR_ZEITSER _.*_ext4
\mv $YEAR\.tar $HOME/OUTPUT/GR30_$ID

#
.... and delete the others.
#
2.4. Quickstart Examples

rm *.ext4 Z37000_\$YEAR

#
add one to the year-counter
#

YEAR='expr ${YEAR} + 1'
echo $YEAR > year.asc
done

NEC SX-6 (DKRZ-Hurrikan)

If run on a supercomputer such as the SX-6 of DKRZ (Hurrikan), a special script with the right queuing parameters and environment variables is required. The shell-script "prepare_run_mpiom_omip" helps to set up a runtime environment on Hurrikan. It will create directories in the appropriate places and set links to the necessary input and forcing files in the Hurrikan "/pool" directory. It will also create run-script which can serve as a simple example for your actual script. In this example it is assumed that the MPI-OM executable has been compiled only with OpenMP parallelization or without any parallelization. The MPI version is commented out. Please keep in mind that, besides for testing, using only one processor (serial queue) does not make much sense on a supercomputer. Identical to the LINUX/SUN example all necessary files are stored in one directory which in this case is on the SHR directory tree on DKRZ Hurrikan. Output files are tared and moved to the UT directory tree. The DKRZ web-side (www.dkrz.de) also has up-to-date examples on the queues and procedures for all kinds of applications. For more details on parallelization and compiling, please see section 2.5 and 2.6.

#! /bin/ksh
#---
1 CPU (maximum number of CPUs 8)
2 h cputime
1 Gbyte memory
job runs on 1 node
join err and out to out
write output to file "GR30_OMIP.rep"
job name
you should always specify your email
address for error messages etc

#PBS -S /bin/ksh
#
#PBS -N mpiom_omip # job name
#
2. Using MPI-OM

```
#PBS -l cpunum_prc=1    # 1 CPU (maximum number of CPUs 8)
#PBS -l cputim_job=02:00:00 # 2 h realtime per node
#PBS -l memsz_job=1.0gb # 1 Gbyte memory (48 GB Memory per node)
#PBS -j o # join err and out to out
#
#export MPIPROGINF=ALL_DETAIL
export F_PROGINF=DETAIL
export F_SETBUF=4096
#
#MPIEXPORT="OMP_NUM_THREADS F_FILEINF" ; export MPIEXPORT
#MPIMULTITASKMIX=ON ; export MPIMULTITASKMIX
OMP_NUM_THREADS=1 ; export OMP_NUM_THREADS
#
#-----------------------------------------------------------------------------
#
# Job file to run MPI-OM with OMIP forcing
#
#-----------------------------------------------------------------------------
#
# If a command has a non-zero exit status, execute ERR trap, if set, and exit
#
#set -ex
#
#-----------------------------------------------------------------------------

expno=test
echo "Experiment: ${expno}"
ncpus=1
nprocx=1
nprocy=1
#
echo " CPUs: ${ncpus} (nprocx: ${nprocx}, nprocy: ${nprocy})"
#
EXPDIR=/shr/2/m212047/${expno} # absolute path to directory with plenty of space:
ARCHIVE=/ut/m/m212047/EXPERIMENTS/${expno}

# absolute path to directory with initial data:
INITIAL_DATA=/pool/SX-6/MPI-OM

# horizontal and vertical resolution
GRID=GR30
LEV=L40
#
# cd $EXPDIR # output and rerun files are written into $ARCHIVE
pwd
#```

ln -s ${INITIAL_DATA}/${GRID}/${GRID}_arcgri arcgri
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_topo topo
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_anta anta
cp ${INITIAL_DATA}/${GRID}/${GRID}_BEK BEK
chmod 755 BEK
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GIWIX_OMIP365 GIWIX
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GIWIY_OMIP365 GIWIY
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GITEM_OMIP365 GITEM
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GIPREC_OMIP365 GIPREC
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GISWRAD_OMIP365 GISWRAD
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GITDEW_OMIP365 GITDEW
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GIU10_OMIP365 GIU10
ln -s ${INITIAL_DATA}/${GRID}/${GRID}_GICLOUD_OMIP365 GICLOUD
ln -s ${INITIAL_DATA}/${GRID}/${GRID}${LEV}_INITEM_PHC INITEM
ln -s ${INITIAL_DATA}/${GRID}/${GRID}${LEV}_INISAL_PHC INISAL
ln -s ${INITIAL_DATA}/${GRID}/${GRID}${LEV}_SURSAL_PHC SURSAL

ln -s ${INITIAL_DATA}/runoff_obs runoff_obs
ln -s ${INITIAL_DATA}/runoff_pos runoff_pos
#
#---------------------------------------------------------------

for lli in 1 2 3 4 5 ; do

YEAR='cat year.asc' ; export YEAR
echo $YEAR
STA=3 ; export STA
RES=0 ; export RES
if [ ${YEAR} -eq 0 ] ; then
STA=2 ; export STA
RES=1 ; export RES
fi
cat > OCECTL << EOF
&nprocs
nprocx=${nprocx}
nprocy=${nprocy}
/
&ocectl
dt  = 86400.
caulapts= 0.
caulapuv= 0.005
aus   = 0.
cah00  = 1000.
dv0    = 1.e-2
av0    = 1.e-2
cwt    = 5.e-4
cstabeps= 0.03
dback  = 1.e-5
aback  = 1.e-4
EOF

#-------------------------
crel sal = 5.e-8
crel tem = 0.
cdvo con = 0.05
cavo con = 0.0
nyears = 1
nmonts = 0
imean = 2
istart = ${STA}
3drest = ${RES}

dzw = 12.,10.,10.,10.,10.,15.,20.,25.,
     30.,35.,40.,45.,50.,55.,60.,70.,80.,90.,
     100.,110.,120.,130.,140.,150.,170.,180.,190.,200.,
     220.,250.,270.,300.,350.,400.,450.,500.,500.,600.1

cat TIMESER >>ZEITSER ; \rm TIMESER
cp Z37000 Z38000
if [ 'expr $YEAR % 10'==10 ]; then
cp Z37000 ${ARCHIVE}/restart/Z37000_${YEAR}
endif

mv fort.71 ${expno}_tho.ext4
mv fort.72 ${expno}_sao.ext4
... otherwise identical to LINUX example ...
tar cvf ${YEAR}.tar ${expno}*.ext4
mv ${YEAR}.tar ${ARCHIVE}/${YEAR}.tar
\rm fort.* ${expno}_*.ext4
YEAR='expr ${YEAR} + 1'
\rm year.asc
echo $YEAR > year.asc
done
echo "submitting next job"
if [ ${YEAR} -le 100 ]; then
qsub ${EXPDIR}/run_mpiom_hamocc_omip
fi
exit
2.5 Parallel Computing with MPI and OpenMP

MPI-OM is designed to run in parallel on different processors. Two ways of parallelization are possible. First, OpenMP (www.openmp.org) which supports shared-memory parallel programming (Several processors on one machine with access to the same shared memory). Second, MPI (Message Passing Interface, www.mpi-forum.org) which additionally supports parallelization across different machines (LINUX cluster) or different nodes (NEC SX-6). MPI and OpenMP libraries are available for almost all architectures including LINUX, SUN and NEC SX-6.

2.5.1 Running the OpenMP version

A model compiled with OpenMP can be started just like the non-parallel examples in section 2.4, only the environment variable

\texttt{OMP\_NUM\_THREADS=\langle numprocs \rangle}

has to be set to the number of available processors.

2.5.2 Running the MPI version

For MPI, the calculated region has to be distributed up among the processors. The distribution along the x and y coordinates has to be defined in the beginning of the namelist OCECTL:

\begin{verbatim}
&NPROCS
  nprocx=...
nprocy=...
&end
\end{verbatim}

Computation is started by first calling the MPI daemon and then starting the MPI execution:

\begin{verbatim}
/sw/linux/mpi/bin/mpd --daemon &
/sw/linux/mpi/bin/mpiexec -np \langle numprocs \rangle $HOME/model/model.x
\end{verbatim}

The number of processors has to be equal to nprocx*nprocy. Model output is written in:

- \texttt{oceout} for processor 0
- \texttt{oceout\_001} for processor 1
- \texttt{oceout\_002} for processor 2
If the number of processors is set to nprocx*nprocy+1 the model is computed in "debug" mode. The additional processor computes the total area and, on each boundary exchange, there is a check if numbers are identical with the total area computation. For debugging, all numerical optimizations have to be switched off while compiling the model because, depending on the loop-length, optimizations can cause small numerical differences.

On Hurrikan (SX-6), because of better performance it is recommended to use OpenMP if not more than 8 processors (one node) are require.

2.5.3 MPI Examples

Sun and Linux

Please note that you need to have a MPI daemon on your machine which is compatible with the compiler that was used to compile the model. If your institute does not provide an MPI environment, you will probably have to compile the MPI library yourself. Alternatively to using "mprun" as in this example the daemon and the executable can be started separately, as described above.

```bash
#!/bin/sh
set echo
set verbose

HOME=/home/patrick ; export HOME
ID=OMIP ; export ID

set echo
set verbose

cat > OCECTL << EOF
&NPROCS
nprocx=4
nprocy=3
/
&OCECTL
DT = 8640.
CAULAPTS= 0.
CAULAPUV= 0.005
AUS = 0.
CAH00 = 1000.
DV0 = 1.E-2
AV0 = 1.E-2
CWT = 5.E-4
CSTABEPS = 0.030
DBACK = 1.E-5
ABACK = 1.E-4
EOF
```
```python
CRELSAL = 2.0E-7
CRELTEM = 0.
CDVOCON = 0.05
CAVOCON = 0.0
NYEARS = 1
NMONTS = 0
IMEAN = 2

&OCEEDZW

EOF
```

```bash
cat >mpi.sh<< END
#!/bin/sh
cd $HOME/OMIP
set -e
./mpiom.x
set +e
END
chmod 755 mpi.sh
mprun -np 12 mpi.sh
```

**NEC SX-6 (DKRZ-Hurrikan)**

On Hurrikan (SX-6), because of better performance it is recommended to use OpenMP if the model should run on only one node. The following is an example taken from www.dkrz.de for an MPI Job which requests 2 compute nodes with 8 CPUs on each node (i.e. 16 CPUs in total!). The scheduler chooses the nodes dynamically, depending on the load. In the script the nodes are named 0 and 1. A four node run would have the numbers 2 and 3 for the additional nodes.

```bash
#!/bin/ksh
PBS -S /bin/ksh # NQSII Syntax to set the shell
#PBS -l cpunum_prc=8 # 8 cpus per node
#PBS -l cputim_job=10:00:00 # 10 h cputime per node
#PBS -l memsz_job=6gb # 6 GB Memory per node
#PBS -T mpisx
#PBS -b 2 # job runs on 2 nodes
#PBS -j o # join err and out to out
#PBS -M myname@mymail.de # you should always specify your email
#PBS -N job_multi16 # job name

/bin/echo " job started at: " \c
date
/bin/echo " ExecutionHost : " \c
hostname # print name of current host
```
2. Using MPI-OM

```bash
EXE=/ipf/x/xnnnnnn/model_mpi.x

mpiexec -host 0 -n 8 -host 1 -n 8 $EXE

/bin/echo " job completed at: " \c
date
#
... data handling similar to the quickstart LINUX example ...
#
```

2.6 Compiling the Model

Most users at some point will have to compile the model themselves. The source code is available from CD or, if you are a registered user, from the ZMAW CVS server.

To retrieve the sources from CVS you have to do the following:

```bash
setenv CVSROOT :pserver:<user-name>@cvs.zmaw.de:/server/cvs/mpiom1
cvs login
cvs checkout mpi-om
```

In any way you will end up with a directory named mpi-om and five subdirectories:

1. **src**
   All sources required to compile the MPI-OM ocean standalone model.

2. **src_hamocc**
   All sources required to compile the HAMOCC marine biogeochemistry together with the MPI-OM ocean model.

3. **make**
   Makefiles required to compile the MPI-OM ocean and the MPI-OM/HAMOCC model.

4. **bin**
   This is where the binaries are stored after compilation.

5. **run**
   Shell scripts to set up a runtime environment.

If you are working within the Max Planck Institute for Meteorology (MPI-MET) or the DKRZ, just go to the make directory and type "make -f Makefile_mpiom_mpiom". The Makefile will automatically detect your machine-type and select an available compiler. If you need to use a different compiler or if you are not working within the MPI-MET or the DKRZ,
you will have to provide and select the compiler and, if required, the MPI and the NetCDF libraries yourself. The example below shows parts of the standard Makefile.

```
#---
DEF = -DZZNOMPI -DVERSIONGR30 -DZZLEVELS40 -DZTIMECHECK \\
 -DZZYEAR360 -DSOR -DZZRIVER_GIRIV \\
 -DMEAN -DRESYEAR -DZZDEBUG_ONEDAY \\
 -DQLOBERL -DBULK_KARA \\
 -DEISREST -DREWWMICE -DALBOMIP \\
 -DISOPYK -DGBOLUS \\
 -DADPO -DSLOPECON_ADPO \\
 -DNURDIF \\
 -DDIAG -DZZGRIDINFO -DZZIFFDDIAI -DZZKONVDIA \\
 -DZZCONVDIA -DZZAMLDDIAI -DTTEOUT_HFL \\
 -DZZYEAR
#---
PROG = mpiom.x
VPATH = ../src
SRCS = absturz.f90 adisit.f90 adisit1.f90 adisitj.f90 amocpr.f90 aufr.f90 \\
....
OBJ = absturz.o adisit.o adisit1.o adisitj.o amocpr.o aufr.o \\
....

Set up system type
UNAMES := $(shell uname -s)
HOST := $(shell hostname)
ifeq ($(UNAMES),SunOS)
 NETCDFROOT = /pf/m/m214089/yin/local/SunOS64
 NETCDF_LIB = -L${NETCDFROOT}/lib -lnetcdf
 NETCDF_INCLUDE = -I${NETCDFROOT}/include
else
 INCLUDES = $(NETCDF_INCLUDE) $(MPI_INCLUDE)
 LIBS = $(NETCDF_LIB) $(MPI_LIB)
endif

ifeq ($(UNAMES), SunOS)
 #FOR SUN (SunStudio10 compiler)
 F90 = f95
 F90FLAGS = $(INCLUDES) -xtypemap=real:64,double:64,integer:32 -fast \\
 -g -xarch=v9b -xchip=ultra3cu -fpp
 # OpenMP: -xopenmp
 endif
```
LDFLAGS = $(F90FLAGS)

all: $(PROG)

$(PROG): $(OBJS)
$(F90) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

rm -f $(PROG) $(OBJS) *.mod i.*.L

clean:

.SUFFIXES: $(SUFFIXES) .f90

%.o: %.f90
$(F90) $(F90FLAGS) -c $(DEF) $<

# Dependencies
#
absturz.o: mo_commo1.o mo_commo2.o mo_param1.o mo_units.o mo_parallel.o
...

## 2.6.1 Conditional Compilation

The MPI-OM source code contains a number of cpp flags for conditional compilation. There are different groups of compile options. First, the group which controls the resolution, the configuration for different platforms and different forcing or coupling options. Second, the group which controls different parameterizations of the model physics. Third, the group which controls the model output. All options are described in the following tables.

<table>
<thead>
<tr>
<th>Key name</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERSIONGIN</td>
<td>grid with high resolution in the Greenland, Iceland and Norwegian Seas</td>
<td></td>
</tr>
<tr>
<td>VERSIONGR03</td>
<td>GR grid (poles over Greenland and Antarctica) with nominal resolution of 0.3 °</td>
<td></td>
</tr>
<tr>
<td>VERSIONGR09</td>
<td>GR grid with nominal resolution of 0.9 °</td>
<td></td>
</tr>
<tr>
<td>VERSIONGR15</td>
<td>GR grid with nominal resolution of 1.5 °</td>
<td></td>
</tr>
<tr>
<td>VERSIONGR30</td>
<td>GR grid with nominal resolution of 3.0 °</td>
<td></td>
</tr>
<tr>
<td>VERSIONGR60</td>
<td>GR grid with nominal resolution of 6.0 °</td>
<td></td>
</tr>
<tr>
<td>VERSIONT43</td>
<td>grid with about T42 resolution and increased resolution at the Equator</td>
<td></td>
</tr>
<tr>
<td>LEVELS23</td>
<td>run with 23 layers (default is 20)</td>
<td></td>
</tr>
<tr>
<td>LEVELS30</td>
<td>run with 30 layers (default is 20)</td>
<td></td>
</tr>
<tr>
<td>LEVELS40</td>
<td>run with 40 layers (default is 20)</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 2.2: List of cpp flags for grid options.
### 2.6. Compiling the Model

<table>
<thead>
<tr>
<th>Key name</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>_coupled</code></td>
<td>coupled to ECHAM5 with PRISM coupler</td>
<td>8.1.2</td>
</tr>
<tr>
<td><code>_synout</code></td>
<td>enable coupler ASCII output to file <code>oceout</code></td>
<td>8.1.2</td>
</tr>
<tr>
<td>bounds_exch_isend</td>
<td>MPI parallelization boundary exchange</td>
<td>8.1.2</td>
</tr>
<tr>
<td>bounds_exch_put</td>
<td>MPI parallelization boundary exchange</td>
<td>8.1.2</td>
</tr>
<tr>
<td>use_comm_MPI1</td>
<td>MPI1 parallelization library</td>
<td>8.1.2</td>
</tr>
<tr>
<td>use_comm_MPI2</td>
<td>MPI2 parallelization library</td>
<td>8.1.2</td>
</tr>
<tr>
<td>SALTCORRECT</td>
<td>correct salinity when coupled to ECHAM5</td>
<td>8.1.4</td>
</tr>
<tr>
<td>TEMPCORRECT</td>
<td>correct temperature when coupled to ECHAM5</td>
<td>8.1.4</td>
</tr>
<tr>
<td>FLUXCORRECT</td>
<td>correct surface fluxes when coupled to ECHAM5</td>
<td>8.1.4</td>
</tr>
<tr>
<td>PBGC</td>
<td>compiling with HAMOCC marine biogeochemistry</td>
<td>5.2.3</td>
</tr>
<tr>
<td>FB_BGC_OCE</td>
<td>downward solar penetration modulated by HAMOCC marine biology; without PBGC: penetration climatology from file</td>
<td></td>
</tr>
<tr>
<td>PDYNAMIC_BGC</td>
<td>diagnostic output for HAMOCC</td>
<td></td>
</tr>
</tbody>
</table>

**Tab. 2.3:** List of cpp flags for forcing or coupling options.
### 2. Using MPI-OM

<table>
<thead>
<tr>
<th>Key name</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOR</td>
<td>use successive over-relaxation time stepping (barotropic solver)</td>
<td>5.2.8</td>
</tr>
<tr>
<td>ISOPYK</td>
<td>Isopycnal diffusion</td>
<td></td>
</tr>
<tr>
<td>GMBULUS</td>
<td>Gent and McWilliams style eddy-induced mixing (Gent et al., 1995a)</td>
<td>5.2.15</td>
</tr>
<tr>
<td>BOLK05</td>
<td>multiply default Gent and McWilliams Bolus coefficient by 0.5</td>
<td>5.2.15</td>
</tr>
<tr>
<td>BOLK025</td>
<td>multiply default Gent and McWilliams Bolus coefficient by 0.25</td>
<td>5.2.15</td>
</tr>
<tr>
<td>REDWMICE</td>
<td>reduced eddy mixing energy transfer in presence of sea ice</td>
<td>5.2.1</td>
</tr>
<tr>
<td>GMVISETAL</td>
<td>calculate Richardson number coefficients after Visbeck et al. (1997)</td>
<td>5.2.15</td>
</tr>
<tr>
<td>ADFS</td>
<td>predictor-corrector advection scheme</td>
<td>5.2.14</td>
</tr>
<tr>
<td>QUICK</td>
<td>quick-scheme as proposed by Farrow and Stevens (1995)</td>
<td></td>
</tr>
<tr>
<td>QUICK2</td>
<td>quick-scheme with modified boundary treatment</td>
<td></td>
</tr>
<tr>
<td>ADPO</td>
<td>total variation diminishing (TVD) advection scheme (Sweby, 1984).</td>
<td>5.2.13</td>
</tr>
<tr>
<td>SLOPECON_ADPO</td>
<td>bottom boundary layer transport scheme for the ADPO advection scheme</td>
<td>5.2.12</td>
</tr>
<tr>
<td>FREESLIP</td>
<td>no friction on boundaries</td>
<td>4.2.1</td>
</tr>
<tr>
<td>NURDIF</td>
<td>vertical diffusion and no mixing (coefficient is set in namelist)</td>
<td>5.2.1</td>
</tr>
<tr>
<td>NURMISCH</td>
<td>only vertical mixing and no diffusion</td>
<td>5.2.1</td>
</tr>
<tr>
<td>UMKLAP</td>
<td>convective adjustment instead of vertical mixing and diffusion</td>
<td>5.2.1</td>
</tr>
<tr>
<td>PLUME</td>
<td>PLUME convection after Stössel instead of convective adjustment</td>
<td>5.2.1</td>
</tr>
<tr>
<td>DBACKGFDL</td>
<td>background vert. diffusion to profile after GFDL</td>
<td></td>
</tr>
<tr>
<td>DBACKGFDL2</td>
<td>background vert. diffusion as mean of DBACK and GFDL</td>
<td></td>
</tr>
<tr>
<td>DBACKPROFIL</td>
<td>set minimum vertical diffusion to profile</td>
<td></td>
</tr>
<tr>
<td>SCHEP</td>
<td>modify horizontal diffusion of momentum</td>
<td></td>
</tr>
<tr>
<td>AULREDSC</td>
<td>reduce grid dependence of horizontal biharmonic diffusion (power of 4 to power of 3) for tracers (T,S)</td>
<td></td>
</tr>
<tr>
<td>AULREDUV</td>
<td>reduce grid dependence of horizontal biharmonic diffusion (power of 4 to power of 3) for momentum (u,v)</td>
<td></td>
</tr>
<tr>
<td>BULK_KARA</td>
<td>use bulk formula from from Kara for surface heat balance</td>
<td></td>
</tr>
<tr>
<td>DASILVA</td>
<td>use bulk formula from from DaSilva for surface heat balance</td>
<td></td>
</tr>
<tr>
<td>DRAGGILL</td>
<td>use bulk formula values from gill (atmosphere ocean dynamics) for surface heat balance</td>
<td></td>
</tr>
<tr>
<td>QLOBERL</td>
<td>compute downward long-wave radiation according to Berliand and Berliand (1952).</td>
<td></td>
</tr>
<tr>
<td>OPEND55</td>
<td>increase exp. scale for downward solar penetration by 2 relative to default</td>
<td></td>
</tr>
</tbody>
</table>

**Tab. 2.4**: List of cpp flags for the physical parameterisation.
### 2.6. Compiling the Model

<table>
<thead>
<tr>
<th>Key name</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEAN</td>
<td>enable monthly/daily mean output</td>
<td>section 7</td>
</tr>
<tr>
<td>DIAG</td>
<td>enable diagnostic output</td>
<td></td>
</tr>
<tr>
<td>DIFFDIAG</td>
<td>enable diagnostic output for diffusion</td>
<td>table 7.3</td>
</tr>
<tr>
<td>CONVDIAG</td>
<td>enable diagnostic output for convection</td>
<td>table 7.1</td>
</tr>
<tr>
<td>AMLDDIAG</td>
<td>enable diagnostic output for max. monthly mixed layer depth</td>
<td>table 7.1</td>
</tr>
<tr>
<td>FORCEDIAG</td>
<td>enable diagnostic output for surface forcing</td>
<td>table 7.4</td>
</tr>
<tr>
<td>KONVDIAG</td>
<td>enable diagnostic output for convection</td>
<td>table 7.1</td>
</tr>
<tr>
<td>MFLDIAG</td>
<td>enable diagnostic output for divergence free velocity</td>
<td>table 7.1</td>
</tr>
<tr>
<td>GRIDINFO</td>
<td>enable grid information output</td>
<td>table 7.3</td>
</tr>
<tr>
<td>PNETCDFO</td>
<td>enable output in NetCDF format</td>
<td></td>
</tr>
<tr>
<td>FORCEDIAG</td>
<td>enable diagnostic output for surface forcing</td>
<td>table 7.4</td>
</tr>
<tr>
<td>KONVDIAG</td>
<td>enable diagnostic output for convection</td>
<td>table 7.1</td>
</tr>
<tr>
<td>MFLDIAG</td>
<td>enable diagnostic output for divergence free velocity</td>
<td>table 7.1</td>
</tr>
<tr>
<td>GRIDINFO</td>
<td>enable grid information output</td>
<td>table 7.3</td>
</tr>
<tr>
<td>PNETCDFO</td>
<td>enable output in NetCDF format</td>
<td></td>
</tr>
<tr>
<td>TESTOUT_HFL</td>
<td>enable diagnostic output for heat-fluxes</td>
<td>table 7.5</td>
</tr>
<tr>
<td>OASIS_FLUX_DAILY</td>
<td>enable daily output for OASIS/PRISM coupler fluxes</td>
<td>table 7.7</td>
</tr>
</tbody>
</table>

**Tab. 2.5:** List of cpp flags for diagnosis.

<table>
<thead>
<tr>
<th>Key name</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESTORE_MON</td>
<td>enable surface salinity restoring to monthly climatology</td>
<td>equation 4.32</td>
</tr>
<tr>
<td>YEAR360</td>
<td>run with climatological forcing (360 days per year)</td>
<td>section 4.5</td>
</tr>
<tr>
<td>RYEAR</td>
<td>run with real year forcing (e.g. NCEP)</td>
<td>section 4.6</td>
</tr>
<tr>
<td>RESYEAR</td>
<td>write restart file at the end of a year; default: month</td>
<td></td>
</tr>
<tr>
<td>SW089</td>
<td>multiply incoming short wave radiation by 0.89 (NCEP only)</td>
<td>section 4.6</td>
</tr>
<tr>
<td>ALBMLTHI</td>
<td>tune albedo for sea-ice and snow</td>
<td></td>
</tr>
<tr>
<td>ALBMSN07</td>
<td>tune albedo for snow</td>
<td></td>
</tr>
<tr>
<td>ALBNCEP</td>
<td>tune albedo for NCEP forcing</td>
<td></td>
</tr>
<tr>
<td>ALBOMIP</td>
<td>tune albedo for OMIP forcing</td>
<td></td>
</tr>
<tr>
<td>RIVER_GIRIV</td>
<td>read river runoff data from GIRIV and not from runoff.obs and runoff.pos files</td>
<td></td>
</tr>
<tr>
<td>GLACCALV</td>
<td>read glacier calving for file gletscher_5653</td>
<td></td>
</tr>
<tr>
<td>FORCE_SLP</td>
<td>read sea level pressure forcing (GIPRESS) for flux calculations</td>
<td></td>
</tr>
<tr>
<td>FORCE_DOWNLW</td>
<td>read downward long-wave radiation forcing (GIDLW) for flux calculations</td>
<td></td>
</tr>
<tr>
<td>EISTEST</td>
<td>enable sea-ice module test</td>
<td></td>
</tr>
<tr>
<td>DRAGTEST</td>
<td>enable drag coefficient test</td>
<td></td>
</tr>
<tr>
<td>DEBUG</td>
<td>enable debugging</td>
<td></td>
</tr>
<tr>
<td>DEBUG_ONEDAY</td>
<td>set the length of a month to one day for debugging</td>
<td></td>
</tr>
<tr>
<td>TIMECHECK</td>
<td>check the time-step in the parallel version with MPI</td>
<td></td>
</tr>
</tbody>
</table>

**Tab. 2.6:** List of cpp flags for runtime control and testing.

<table>
<thead>
<tr>
<th>Key name</th>
<th>Action</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAG</td>
<td>compiling with NAG compiler (Sun OS)</td>
<td>8.1.3</td>
</tr>
<tr>
<td>_IFC</td>
<td>compiling with Intel Fortran compiler (Windows and Linux)</td>
<td></td>
</tr>
<tr>
<td>NEC</td>
<td>Run on NEC SX-6 (DKRZ Hurrikan)</td>
<td></td>
</tr>
</tbody>
</table>

**Tab. 2.7:** List of cpp flags for compiler and system options.
3. CREATING A NEW SETUP

3.1 Creating the Grid

3.1.1 anta

Step one is the creation of the latitudes and longitudes of the new Arakawa C-grid. We will need this file during the rest of the grid generation procedure. The job script to create a new bipolar grid for MPI-OM is called "mk_anta-etopo2.job". Users need to adjust position and size of the two poles as well as the grid resolution. The program should be run at double precision. The example below is for the GROB60 test-setup.

```
#INPUT PARAMETERS TO BE EDIT BY THE USER
#####################################
name of the grid
grid=GR60

1st pole positions
rlat1=72.
rlon1=-40.

phi determines size of 1st pole
phi=pi/2 gives no hole
phi smaller than pi/2 gives increasingly larger hole
note: size of second pole adjusted with parameter je
phi=1.49

2nd pole Eurasia
rlat2=-84.
rlon2=60.

horizontal dimensions
ie=60
je=50
####################################
```

INPUT/OUTPUT:

1. INPUT: etopo2.ext
ETOPO-5 dataset (Digital relief of the Surface of the Earth) in big endian extra format.
2. **OUTPUT: anta**  
Grid file with lat’s and lon’s from the Arakawa C-grid. This file is needed during the rest of the procedure, e.g. generation of initial and forcing data.

3. **OUTPUT: topo**  
Ocean topography in ASCII format. For coarse resolution setups this file usually needs to be "corrected" by hand to get a proper representation of the ocean topography, e.g. Bering Strait or Panama etc. All important sill depth should be checked, e.g. Drake Passage or Denmark Strait.

### 3.1.2 **arcgri**

Step two is the creation of the grid distances of the new grid. The job script to create the second grid description file for MPI-OM is called "mk_arcgri.job". The file contains the grid distances dxp, dxy, dxu, dlyu, dlyu and dlyv of the scalar and vector points of the Arakawa C-grid as well as the local coriolis parameter f. Users need to change the dimensions ie and je accordingly. The program should be run at double precision.

**INPUT/OUTPUT:**

1. **INPUT: anta**  
The grid file with lat’s and lon’s from the Arakawa C-grid in big endian extra format.

2. **OUTPUT: arcgri**  
Grid file with distances dxp, dxy, dxu, dlyu, dlyu and dlyv of the scalar and vector points of the Arakawa C-grid as well as the local coriolis parameter in big endian extra format.

### 3.1.3 **BEK**

Step three is the creation of BEK file for the new grid. The job script to create the BEK file for MPI-OM is called "mk_BEK.job". The file stores the information on the ocean basins which is of importance for the diagnostic output. Users need to change the dimensions ie and je in the script accordingly.

**INPUT/OUTPUT:**

1. **INPUT: anta**  
The grid file with lat’s and lon’s from the Arakawa C-grid in big endian extra format.
3.2 Creating the Input

3.2.1 INISAL and INITEM

In step four we generate the initial value data sets for temperature and salinity by interpolating a global ocean climatology onto the model grid. Two global hydrographic climatologies are available. First, the "PHC" climatology with improved arctic ocean information from Steele et al. (2001) and second, the new global hydrography from Gouretski and Koltermann (2004). The job script to create the files from the Steele et al. (2001) climatology is called "mk_phc.job", the script to create them from the Gouretski and Koltermann (2004) climatology is called "mk_sac.job". The user has to specify the dimensions ie and je and the vertical resolution. The following example is from "mk_phc.job":

```bash
foreach code (temp salt)
foreach time (an) # option : mon
if $version == GR60 then
 set me=60
 set ne=50
 set lev2=20
endif
```

INPUT/OUTPUT:

1. **INPUT:** anta
   The grid file with lat’s and lon’s from the Arakawa C-grid in big endian extra format.

2. **INPUT:** PAC or SAC file
   Ocean climatology in EXTRA format.

3. **OUTPUT:** INISAL, INITEM
   Ocean initial values for temperature and salinity.
3.2.2 SURAL and SURTEM

The surface restoring maps, SURAL and SURTEM, have to be extracted from the 3-D INISAL, INITEM by selecting the first level (CDO or EXTRA tools, ”sellevel”). A monthly climatology is only available for Steele et al. (2001).

3.2.3 runoff_obs and runoff_pos

Positions of river discharge are stored with latitudes and longitudes. Their referring grid points are assigned during runtime. Nevertheless, to make sure the positions fit to the grid runoff_obs and runoff_pos have to be specifically created for each setup. The job script to create the files is called ”mk_runoff.job”.

**INPUT/OUTPUT:**

1. **INPUT: anta**
   The grid file with lat’s and lon’s from the Arakawa C-grid in big endian extra format.

2. **INPUT: runoff.nc**
   Global runoff in NetCDF format from the OMPI project.

3. **INPUT: land_sea_mask.ECMWF.ext4**
   The ECMWF land-sea mask in EXTRA format.

4. **INPUT: ibek.ext**
   Ocean basin information in EXTRA format.

5. **OUTPUT: runoff_obs**
   Monthly mean river discharge data (currently for 53 positions) in EXTRA format.

6. **OUTPUT: runoff_pos**
   Longitudes and latitudes of the river discharge positions in EXTRA format.

3.3 Interpolate the Forcing

Now that all grid information is available we need to provide the daily mean surface fields of heat, freshwater and momentum fluxes (see also.2.1.3). A popular choice is the climatological OMIP forcing as discussed in 4.5. The job script to interpolate the forcing from the OMIP climatology to the
chosen model grid is called "forcing_omip.job". The user has to specify the dimensions ie and je.

**INPUT/OUTPUT:**

1. **INPUT: **anta
   The grid file with lat's and lon's from the Arakawa C-grid in big endian extra format.

2. **INPUT: OMIP climatology data**
   2m_dewpoint_temperature.nc, east_west_stress.nc, north_south_stress.nc,
   scalar_wind.nc, total_precipitation.nc, 2m_temperature.nc, mean_sea_level_pressure.nc,
   total_cloud_cover.nc and total_solar_radiation.nc in NetCDF format.

3. **INPUT: land_sea_mask.ECMWF.ext4**
   The ECMWF land-sea mask in EXTRA format.

4. **OUTPUT: surface forcing fields**
   Total cloud cover: GICLOUD
   Precipitation: GIPREC
   Solar radiation: GISWRAD
   Dew point temperature: GITDEW
   Surface temperature: GITEM
   10 m wind speed: GIU10
   zonal wind stress: GIWIX
   meridional wind stress: GIWIY
   All files in EXTRA format.

Also available is a forcing compiled from the NCEP/NCAR reanalysis (section 4.6). The script is called "forcing_ncep.job". The NCEP/NCAR reanalysis provides the same input fields as the OMIP project. The only difference is that "forcing_ncep.job" has to consider the leap years.

### 3.4 Modifications in the Source

The generation of a new grid requires some modifications in the source code, encapsulated with an appropriate CPP switch (see 2.6.1). The new grid has to be defined in the following subroutines:

1. **mo_param1.f90**
   Define new global model dimensions.

2. **diag_ini.f90**
   Define new diagnostic locations for timeseries output.
3. **mo_commodiag.f90**
   Define different variables for grid types with different orientation, because the through-flows are different.

4. **diagnosis.f90**
   Grid types are taken into account when calculating the diagnostic output.
4. NUMERICAL BACKGROUND

Most parts of this chapter are taken from Marsland et al. (2003) and the HOPE model description by Wolff et al. (1997).

4.1 Ocean Primitive Equations

The horizontal momentum balance for a hydrostatic Boussinesq fluid on a rotating sphere is

\[
\frac{d\vec{v}_o}{dt} + f(\vec{k} \times \vec{v}_o) = -\frac{1}{\rho_w} \left[ \nabla_H (p + \rho_w g \zeta) \right] + \vec{F}_H + \vec{F}_V
\]

(4.1)

where \( \vec{v}_o = (u_o, v_o) \) is the oceanic horizontal velocity vector on the orthogonal coordinates, \( t \) is the time, \( f \) is the Coriolis parameter, \( \vec{k} \) is a unit vector normal to the earth’s center, \( \rho_w \) is a constant reference density, \( \nabla_H \) is the horizontal gradient operator, \( p \) is the internal pressure, \( g \) is the acceleration due to gravity and \( \zeta \) is the sea surface elevation. The total derivative is given by \( \frac{d}{dt} = \frac{\partial}{\partial t} + \vec{v}_o \cdot \nabla_H + w_o \cdot \frac{\partial}{\partial z} \) where \( w_o \) is the vertical component of ocean velocity and \( \frac{\partial}{\partial z} \) is the vertical partial derivative. \( \vec{F}_H \) and \( \vec{F}_V \) are parameterizations of horizontal and vertical eddy viscosity, respectively.

Diagnostic treatment of pressure and density is used to close the momentum balance. Density \( \rho \) is taken to be a function of model pressure, temperature and salinity according to the equation of state polynomial defined by the Joint Panel on Oceanographic Tables and Standards (UNESCO, 1983). Potential temperatures are converted to in situ temperatures for the density calculation. The pressure is calculated using the hydrostatic equation.

\[
\frac{\partial p}{\partial z} = -g \rho
\]

(4.2)

Forward integration of the ocean model surface elevation is based on a linearized kinematic boundary condition stating that the time rate of change of surface elevation is equal to the vertical component of oceanic velocity at the surface.

\[
\frac{\partial \zeta}{\partial t} = w_o \big|_{z=\zeta}
\]

(4.3)
The vertical velocity is calculated from the horizontal velocity field using the incompressibility condition.

\[
\frac{\partial w_o}{\partial z} = -\vec{\nabla}_H \cdot \vec{v}_o \tag{4.4}
\]

Integrating over the entire depth gives the vertical velocity at the sea surface.

\[
w_o\big|_{z=\zeta} = -\vec{\nabla}_H \cdot \int_{-H}^{\zeta} \vec{v}_o \, dz \tag{4.5}
\]

Potential temperature \(\theta\) and salinity \(S\) obey the advection-diffusion equations

\[
\frac{d\theta}{dt} = \vec{\nabla}_H \cdot \left( K \vec{\nabla}_H \theta \right) \tag{4.6}
\]

\[
\frac{dS}{dt} = \vec{\nabla}_H \cdot \left( K \vec{\nabla}_H S \right) \tag{4.7}
\]

where the tensor \(K\) is a subgridscale parameterization of horizontal/isoneutral and vertical/dianeutral diffusion.

The surface fields can be relaxed to climatological fields \((\Theta_*, S_*)\) by specifying

\[
D_V \frac{\partial \Theta}{\partial z} = \lambda (\Theta_* - \Theta) \tag{4.8}
\]

\[
D_V \frac{\partial S}{\partial z} = \lambda (S_* - S) \tag{4.9}
\]

Relaxation time constants can be set in the namelist (2.1). At lateral boundaries and at the sea floor no flux conditions apply for heat and salt.

### 4.2 Ocean Subgridscale Parameterizations

The coarse horizontal and vertical resolution of OGCMs necessitates the use of subgridscale parameterizations. The MPI-OM model currently has formulations for BBL slope transport, horizontal and vertical viscosity, vertical and isopycnal diffusivity, eddy-induced mixing, and convection, as described below. With respect to the many parameter choices necessary for inclusion of subgridscale processes in the MPI-OM model (and OGCMs more generally), we note the myriad sensitive interactions that such choices have on each other. Since computational constraints do not currently permit a full spanning of parameter space the parameter choices used in the present version of MPI-OM are a necessary blend of those gained via past experience with the HOPE model, those available from the bandwidth of literature values, and those that were tuned (in a sometimes ad hoc manner traditionally referred to as the art of numerical modeling) to give iteratively improved results as part of the model development process. The latter is relevant to, for example, our choices of friction, diffusion, convection and wind mixing parameters.
4.2. Ocean Subgridscale Parameterizations

4.2.1 Slope Convection

The thermohaline circulation of the world’s ocean is maintained by the sinking of dense water masses in high latitudes. In most cases these water masses form in marginal seas or on shelves and slide down the continental slopes. One particular phenomenon is the ‘overflow’, where dense near-bottom waters cross sills between ocean basins (e.g. Price and Baringer, 1994). This process is not well resolved in coarse-resolution z-coordinate ocean models owing to a lack of a BBL. In such models the dense water passing over a sill is advected horizontally and placed above lighter water. The resulting convection (parameterized as strong mixing or intensified diffusion) leads to an overestimation of the mixing between the overflow and the ambient water. To overcome this problem Beckmann and Döscher (1997) developed a BBL parameterization where the horizontal flow is redirected as if it flowed along the bottom. This approach to the BBL problem can be avoided by the use of σ-coordinate models (e.g. Ezer and Mellor, 1997), which are been compared to both isopycnal and z-coordinate models in the Dynamics of Overflow, Mixing and Entrainment (DOME) Project. Advantages and disadvantages of the various vertical coordinate systems are discussed by the DYNAMO Group (1997) or on the DOME webpage (www.rsmas.miami.edu/personal/tamay/DOME/dome.html).

In the HOPE model a relatively simple slope convection scheme was introduced by Legutke and Maier-Reimer (2002). In the Legutke and Maier-Reimer scheme the slope convection was considered to be a directional diffusive transport whereby an exchange of tracer occurs between the bottom cells of two adjacent horizontally discretised water columns. The BBL scheme newly introduced into MPI-OM is schematically represented in Fig. 4.1 which shows the BBL transport $T_{BBL}$ from a source cell to a target cell. The implementation is similar to that of Beckmann and Döscher (1997) with two notable exceptions. Firstly, the BBL thickness $H_{BBL}$ may be less than the model layer thickness $\Delta z_s$ of the source cell. That is,

$$H_{BBL} = \min (\Delta z_s, BBL_{\text{max}})$$  \hspace{1cm} (4.10)

where $BBL_{\text{max}}$ is a prescribed maximum thickness. The motivation is to limit the BBL transport in coarse vertical resolution ocean models where the deeper grid cells can be of order 1 km thickness. Secondly, as suggested by Campin and Goosse (1999) the BBL transport is redirected to a level of neutral buoyancy rather than to the bottom cell of a horizontally adjacent water column. For a source cell having density $\rho_s$ at model level $k_s$, the target cell level $k_t$ is chosen by the following condition.

$$k_t = \begin{cases} k_{\rho} & \text{if } \rho_t \leq \rho_s \text{ and } \rho_{t+1} > \rho_s \\ k_{\text{bot}} & \text{if } \rho_{\text{bot}} \leq \rho_s \end{cases}$$  \hspace{1cm} (4.11)

Here, the subscript bot denotes the deepest wet model layer in a target column. The neutral buoyancy approach is particularly useful in regions
Fig. 4.1: Schematic diagram of the bottom boundary layer advective transport to neutral density level. Model levels are indicated by $k$ where $k_s$ and $k_t$ indicate the levels of the source and target cells respectively. The grid index $i$ refers to either meridional or parallel directions in the curvilinear horizontal discretization. For additional details refer to the text.

where coarse horizontal resolution does not allow for a gradual descent on a staircase-like slope. The resultant BBL transport is given by

$$T_{r_{BBL}} = u_s \Delta x, y H_{BBL}$$

(4.12)

where $u_s$ represents the meridional (parallel) velocity in the model level $k_s$, and $\Delta x, y$ represents the parallel (meridional) source cell width. The remaining advective transport is given by

$$T_r = u_s \Delta x, y (\Delta z_s - H_{BBL})$$

(4.13)

and is purely horizontal. Although not used in this study, MPI-OM also includes an improved version of the BBL scheme where $H_{BBL}$ is calculated locally depending on the stratification and friction velocity using the formulation of Killworth and Edwards (1999).

### 4.2.2 Eddy Viscosity

The horizontal and vertical eddy viscosity are treated separately. Horizontal eddy viscosity $\vec{F}_H$ is parameterized using a scale-dependent biharmonic formulation

$$\vec{F}_H = -\vec{\nabla}_H \cdot \left( B_H \vec{\nabla}_H \Delta_H \vec{v}_o \right)$$

(4.14)
where $B_H$ is a coefficient proportional to the fourth power of the grid spacing.

Vertical eddy viscosity $\vec{F}_V$ is parameterized as

$$\vec{F}_V = \frac{\partial}{\partial z} \left( A_V \frac{\partial}{\partial z} \vec{v}_o \right).$$

The eddy coefficient $A_V$ is partially relaxed to the value at the previous time step by use of a time filter to avoid $2\Delta t$ oscillation. Using $n$ and $\Lambda_V$ to denote the time increment and relaxation coefficient gives:

$$A_V^n = (1 - \Lambda_V) A_V^{n-1} + \Lambda_V \left( A_{VO} (1 + C_{RA} R_i)^{-2} + A_w + A_b \right).$$

The time linear relaxation coefficient $\Lambda_V$ is set to 0.6 in accordance with past experience. Following Pacanowski and Philander (PP; 1981) the Richardson number $R_i$ dependent mixing term includes constant coefficients $A_{VO}$ and $C_{RA}$. A small constant background viscosity representing mixing by internal wave breaking is denoted by $A_b$. The PP scheme in its classical form underestimates turbulent mixing close to the surface. Therefore an additional parameterization for the wind induced stirring $A_w$ is included. The near surface wind mixing is proportional to the cube of the local ten meter wind speed $V_{10m}$, and is reduced in proportion to the fractional sea ice cover $I$. It decays exponentially with depth and depends on the local static stability $\delta_z \rho$.

$$A_w(1) = (1 - I) W_T V_{10m}^3$$

$$A_w(k) = A_w(k - 1) \frac{\lambda}{\Delta_z} \frac{\Delta_z}{\Delta_z + \delta_z \rho} e^{-W_T z_0}$$

where $k=2,3,...,k_{bot}$ is the vertical level and $\Delta z$ is the level thickness; $\lambda$, $z_0$, and $W_T$ are adjustable parameters which were tuned for optimal mixed layer depths.

Tracer diffusion in Eqns 4.6 and 4.7 is represented in two optional ways. The diffusion tensor $K$ can be chosen either to represent: a) standard horizontal/vertical diffusion

$$K = D_H \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \epsilon \end{bmatrix}$$

with $\epsilon = \frac{D_V}{D_H}$; or b) isoneutral/dianeutral diffusion

$$K = D_H \begin{bmatrix} 1 & 0 & S_x \\ 0 & 1 & S_y \\ S_x & S_y & \epsilon + S^2_{dyf} \end{bmatrix}$$
with \( \epsilon = \frac{D_V}{D_H} \) and \( S_{\text{dif}} = (S_x, S_y, 0) = (-\frac{\delta_x \rho}{\delta_x \rho}, -\frac{\delta_y \rho}{\delta_y \rho}, 0) \).


The effect of tracer mixing by advection with the unresolved mesoscale eddies is parameterized after Gent et al. (1995).

The vertical eddy diffusivity coefficient \( D_V \) is treated similarly to Eqn 4.16, except for the cubic dependence on the shear instability-dependent (Richardson number) term:

\[
D_V^n = (1 - \Lambda_D) D_V^{n-1} + \Lambda_D \left( D_{VO} (1 + C_{RD} R_i)^{-3} + D_w + D_b \right). \tag{4.21}
\]

As with the vertical viscosity, \( D_{VO}, C_{RD} \) and the small background term \( D_b \) are constant. The wind-induced term \( D_w \) is treated in the same manner as for viscosity.

There are several choices for parameterization of convection currently available in the MPI-OM model. For details please see 5.2.1

### 4.3 Model Grid

Horizontal discretization of the MPI-OM model is on a staggered Arakawa C-grid (Arakawa and Lamb, 1977). The reference grid is shown in figure 4.2. It consists of prism-shaped finite volumes with the edges aligned with coordinates. Vertical discretization is on a so called ‘z-coordinate’ system (differentiating from pressure or density coordinate systems).

#### 4.3.1 Horizontal discretization

Variables defined on vector points are:

- horizontal velocities \((u, v)\)
- wind stress \(\tau = (\tau^\phi, \tau^\lambda)\)
- coefficients of vertical viscosity

Variables defined on scalar points are:

- potential temperature \(\Theta\)
- salinity \(S\)
- density \(\rho\)
4.3. Model Grid

Fig. 4.2: Layout of the Arakawa C–grid. Boxes denote scalar points, slashes vector points (\(u\) in \(i\)-direction and \(v\) in \(j\)-direction) and stars the points where the stream function \(\psi\) is defined.

- pressure \(p\)
- vertical velocity \(w\)
- coefficients of vertical diffusivity
- sea surface elevation \(\zeta\)
- heat– and freshwater fluxes across the air sea interface

Diagnostic stream functions are defined in the \(\psi\) points of the grid.

Multiple grid-refinements on an orthogonal grid are possible, i.e. MPI-OM calculates a grid using two vectors, one containing information on longitudes and one on latitudes. A high resolution in a specified region may cause very “slim” grid cells elsewhere.

Indexing is done as follows:

- West – East : \(I = 1, \ldots, IE\),
- North – South : \(J = 1, \ldots, JE\),
- Sea surface – Bottom : \(K = 1, \ldots, KE\)
The points with west–east indices 1 and 2 correspond to points with indices IE-1 and IE, respectively, when periodic boundaries are chosen.

The spherical geometry of the earth is taken into account by storing all grid distances $\Delta x(\lambda, \phi)$ and $\Delta y(\lambda, \phi)$ on arrays, which are then used in the discretization formulas.

### 4.3.2 Vertical discretization

The vertical discretization is the same as used in the HOPE model (Wolff et al., 1997), which includes partial vertical grid cells, i.e. at each point in the horizontal grid the deepest wet cell has a uniform thickness that is adjusted to resolve the discretised bathymetry. The surface layer thickness is also adjusted to account for the sea surface elevation and the sea ice/snow draft where appropriate.

![Fig. 4.3: Vertical structure of model grid](image)

The choice of depth values at vector points, and thus the assignment of layer thicknesses, is free. The vertical velocity component is then computed as indicated in fig. 4.2. Model arrays are defined as follows:

```
Array(dimensions) : description

DZW(KE) : Vertical distance between two vertical velocity points (layer thickness). The layer thicknesses are set in the main program via
```
DATA DZW / . . . / and may be changed by the user. All other vertical distances are computed from this array.

\[ DZW(K) = \Delta z_{wk} \quad k = 1, \ldots, KE \]

\( \text{TIESTW(KE+1)} \): Actual depth of \( w- \) levels (\( \text{TIESTW(1)}=0 \))

\[ \text{TIESTW}(K) = \sum_{l=2}^{k} \Delta z_{wl-1} \quad k = 2, \ldots, KE \]

\( \text{TIESTU(KE+1)} \): Actual depth of vector/scalar levels (depend only on \( k \))

\[ \text{TIESTU}(K) = 0.5 \times (\text{TIESTW}(K+1) - \text{TIESTW}(K)) \quad k = 1, \ldots, KE \]

\( \text{DZ(KE)} \): Vertical distance between two vector/scalar points (for \( K=1 \) this is half of the first layer thickness)

\[ \text{DZ}(K) = \Delta z_{uk} \quad k = 1, \ldots, KE \]

After a topography dataset has been supplied on the user specified grid (at the positions of vector points) MPI-OM recalculates the actual depth of scalar points as the maximum depth of the four surrounding vector points. Having done this, local layer thicknesses are computed taking into account the adjustment of near bottom vertical velocity points (see fig. 4.3).

The layer thicknesses are stored on arrays \( \text{DDUE} \), \( \text{DDUO} \) and \( \text{DDPO} \)

\( \text{DDUE/O(IE, JE, KE)} \): Layer thicknesses at vector points

\( \text{DDPO(IE, JE, KE)} \): Layer thicknesses at scalar points

where E/O indicate the vector points in u and v direction.

### 4.3.3 Curvilinear Coordinate System

The MPI-OM model uses a bipolar orthogonal spherical coordinate system. If the poles are antipodes (diametrically opposed) then the coordinate system is reduced to a rotated spherical grid. Otherwise, orthogonal meridians and parallels are constructed according to the choice of zonal and meridional resolution and are used to define the spatial mesh. Although it may be desirable to maintain ‘quadrature’ of the grid (i.e. within each grid cell the local zonal and meridional grid distances are equal), it is by no means a necessary condition. Two advantages can be achieved by assignment of a radius to the poles. Firstly, land points can be removed from the computational matrix. Secondly, by choosing non-equal pole radii horizontal
Fig. 4.4: Standard MPI-OM orthogonal curvilinear grid for global climate study applications at MPIfM.

resolution can be concentrated about the pole of smaller radius for regional studies. Implementation of the curvilinear grid is relatively straightforward but does require some additional computational expense. In terms of memory many additional arrays must be added for storage of all terms related to horizontal metrics between both scalar and vector neighboring pairs. The processing time is therefore extended for all operations including horizontal metrics that could otherwise be factored on a regular grid. This condition is omnipresent throughout the model code with the exception of purely vertical operations such as convection.

The standard MPIfM horizontal ocean grid used for climate studies has traditionally been at a spatial resolution approximating spectral truncation T42 with additional equatorial meridional grid refinement (e.g. HOPE, Legutke and Voss, 1999; OPYC, Roeckner et al., 1999). With the 2005 IPCC experiments this has changed to the GROB15 grid with a formal resolution of 1.5°. In this setup, one pole is located over Greenland and the other over Antarctica. The horizontal resolution gradually varies between 10 km in the Arctic and about 170 km in the Tropics. This arrangement gives highest resolution in the main sinking regions associated with the thermohaline circulation (THC). It has 40 vertical levels with level thickness increasing with depth. Eight layers are within the upper 90 m and 20 are within the upper 600 m. Also common is the GR30 setup with a formal resolution of 3.0°. The models bathymetry was created by interpolation of the ETOPO-5 dataset (Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. NOAA, National Geophysical Data Center, Boulder, Colorado, 1988) to the model grid. The spectral truncation T42
grid and other grid versions, used for more regionally focused studies, are shown in Marsland et al. (2003).

### 4.4 Bulk Formulae

Simulation with the ocean model requires the specification of heat, fresh water and momentum fluxes at the air/sea interface. Introducing $Q_{srf}$ to denote either $Q_w$ or $Q_i$ in Eqn 6.7 the surface heat balance is given by

$$Q_{srf} = Q_{se}^{srf} + Q_{la}^{srf} + Q_{lw}^{srf} + Q_{sw}^{srf}$$  \hspace{1cm} (4.22)

where $Q_{se}^{srf}$, $Q_{la}^{srf}$, $Q_{lw}^{srf}$ and $Q_{sw}^{srf}$ are parameterizations of the sensible, latent, long-wave and short-wave heat fluxes, respectively.

Following Oberhuber (1993) the turbulent fluxes are parameterized as

$$Q_{se}^{srf} = \rho_a c_a C_H V_{10m} (T_a - T_{srf})$$  \hspace{1cm} (4.23)

$$Q_{la}^{srf} = \rho_a L_{srf} C_L V_{10m} (q_a - q_{srf})$$  \hspace{1cm} (4.24)

Constants $\rho_a$, $c_a$ and $L_{srf}$ denote the air density, the air specific heat capacity and the latent heat of vaporization or sublimation as appropriate. The 10 m wind speed $V_{10m}$ and 2 m air temperature $T_a$ are taken as prescribed forcing. Variable coefficients of sensible $C_H$ and latent $C_L$ heat transfer are formulated according to Large and Pond (1982). The surface temperature $T_{srf}$ represents either the ocean model upper layer temperature or the sea ice/snow layer skin temperature as in Eqn 6.9. The specific humidity $q$ is a function of water vapor pressure $e$ (units of Pascal) and air pressure $p$ (currently approximated by a constant 1000 hPa in MPI-OM-1).

$$q = (0.623e)/(p - 0.378e)$$  \hspace{1cm} (4.25)

At the 2 m level ($q_a$) the water vapor pressure is a function of dew point temperature, while at the surface ($q_{srf}$) the saturation vapor pressure is a function of the water or ice/snow surface temperature. In both cases the vapor pressures ($e$) are calculated according to the formulæ of Buck (1981).

The radiant fluxes are parameterized as

$$Q_{lw}^{srf} = \varepsilon\sigma T_a^4 (0.39 - 0.05\sqrt{e/100}) (1 - \chi n^2) + 4\varepsilon\sigma T_{srf}^3 (T_{srf} - T_a)$$  \hspace{1cm} (4.26)

$$Q_{sw}^{srf} = (1 - \alpha_{srf}) Q^{incsw}$$  \hspace{1cm} (4.27)

The parameterization of net longwave radiation is based on that of Berliand and Berliand (1952), with the fractional cloud cover $n$ taken as prescribed forcing. The surface thermal emissivity and Stefan-Boltzmann constant are denoted by $\varepsilon$ and $\sigma$ respectively. The saturation vapor pressures $e$ depend on water or sea ice/snow conditions and are also calculated according to
the formulae of Buck (1981). The cloudiness factor $\chi$ is a modified form of that proposed by Budyko (1974) and is a function of latitude $\phi$.

$$\chi = 0.5 + 0.4(\min(|\phi|, 60^\circ))/90^\circ \quad (4.28)$$

The incident shortwave radiation $Q^{incsw}$ is provided as part of the forcing data and implicitly modified by cloud cover in the ERA model. The surface reflectivity $\alpha_{srf}$ in Eqn 4.27 is either that appropriate for open water or takes one of four possible values determined by both the absence or presence of snow and by whether the surface temperature of the sea ice or snow is below 0°C (freezing) or equal to 0°C (melting).

$$\alpha_{srf} = \begin{cases} 
\alpha_w & \text{open water} \\
\alpha_{im} & \text{sea ice surface and melting} \\
\alpha_{if} & \text{sea ice surface and freezing} \\
\alpha_{sm} & \text{snow surface and melting} \\
\alpha_{sf} & \text{snow surface and freezing} 
\end{cases} \quad (4.29)$$

Over open water $Q_{sw}^w$ is allowed to penetrate beyond the upper model layer with an exponential decay profile.

The surface freshwater forcing effect on sea level displacement is given by

$$Q_\zeta = P - E + R + G \quad (4.30)$$

where $P$, $E$, $R$ and $G$ are fluxes of freshwater in units of m s$^{-1}$ due to precipitation, evaporation, river runoff and glacial meltwater, respectively. For the ocean only simulations considered here $P$ is taken as prescribed forcing, $R$ is taken from the observed mean monthly discharge of the world’s 50 largest rivers (Dümenil et al., 1993), and $G$ is neglected. Finally, $E$ is calculated from the latent heat flux (Eqn 4.24) as

$$E = Q_{srf}^{la}/(L_{srf} \rho_w) \quad (4.31)$$

where $\rho_w$ is the density of sea water and $L_{srf}$ is once again the latent heat of vaporization or sublimation as appropriate for water or ice/snow surfaces respectively. The corresponding change in surface model layer salinity $\Delta S_1$ is given by

$$\Delta S_1 = \left(\frac{\Delta z_1 + Q_\zeta}{\Delta z_1}\right) S_1 + (S_1 - S_{obs})/S_R \quad (4.32)$$

where $S_R$ is a time-linear restoring coefficient (units s$^{-1}$), and $S_{obs}$ is a prescribed observed (monthly or annual) surface salinity (see also equation 4.8). The salinity restoring helps to correct for an unbalanced globally integrated surface freshwater flux, along with errors in the poorly known forcing fields ($P$, $R$, and $G$). The restoring has the positive effect of reducing long term model drift. However, it does damp model variability. A more thorough discussion of the effects of surface relaxation is given by Killworth et al.
The timescale of the restoring is set in the namelist (see table 2.1), restoring to a monthly climatology is an option which requires a CPP switch (Section 2.6.1).

Momentum forcing by atmospheric wind stress over sea ice is applied directly in Eqn. 6.1. For the ocean surface layer velocity $\vec{v}_1$, the wind stress over open water and the ocean-ice stress otherwise result in a change of

$$\frac{\partial \vec{v}_1}{\partial t} = \frac{1}{\rho_w \Delta z_1} \vec{r}_a^o + \frac{I}{\rho_w \Delta z_1} \vec{r}_i$$

where the ice to ocean stress $\vec{r}_i = -\vec{r}_o$ from Eqn 6.2.

### 4.5 OMIP Atmospheric Forcing

The OMIP forcing is a climatological forcing dataset with daily temporal resolution and atmospheric synoptic scale variability. It provides the heat, freshwater and momentum fluxes at the air/sea interface required by the MPI-OM model. The forcing data is taken from the German Ocean Model Intercomparison Project (OMIP) climatology, and hereafter is called the OMIP-forcing. OMIP was a collaboration between MPIfM, the German Climate Computing Center (DKRZ) and the Alfred Wegener Institute for Polar and Marine Research. The OMIP project compared the mean state of the global circulation of HOPE with that of the Modular Ocean Model (MOM2; Pacanowski, 1995). Considerable emphasis was also placed on the generation of a surface heat and freshwater flux climatology. The OMIP-forcing was derived from the ECMWF Re-Analysis (ERA; Gibson et al., 1997) 15 year dataset and is documented by Röke (2001).

Three criteria were used for the design of the OMIP-forcing: that the forcing be global; that the forcing resolves timescales associated with weather systems; and that the horizontal resolution of the forcing be somewhat finer than that commonly used in OGCMs. The forcing was constructed by Gaussian filtering of the ERA data to produce a low-frequency and a high-frequency component. The low-frequency components from all years were averaged to create a single mean year. Then the high-frequency component of a single year was superimposed onto the mean year to maintain quasi-realistic synoptic scale space-time variability. The criterion for choosing a particular year for the high-frequency component was to maximize the variance of the OMIP-forcing relative to the variance of the original ERA data. For dynamical consistency it was considered desirable to choose only one high-frequency year for all forcing products (winds, temperatures etc). As different products have maximum variance in different years, the maximization of variance was arbitrarily limited to zonal wind stress. This resulted

---

1 www.mpimet.mpg.de/Depts/Klima/natcli/omip/omip_report.html
in the choice of the year 1982, with preservation of 78\% of the original ERA variability relative to monthly means.

4.6 NCEP/NCAR Atmospheric Forcing

The NCEP/NCAR reanalysis is a dataset with daily temporal resolution and atmospheric synoptic scale variability (Kalnay, 1996). Daily 2 m air and dew-point temperatures, precipitation, cloud cover, downward shortwave radiation, 10 m wind speed and surface wind stress are available for the full period that is covered by the NCEP/NCAR reanalysis (1948-today). Dew point temperature $T_{Dew}$ is derived from specific humidity $q$ and air pressure $p$ according to Oberhuber (1988).

\begin{align*}
e &= q \cdot p / (0.378 \cdot q + 0.623) \quad (4.34) \\
\alpha &= 1/7.5 \cdot (\log_{10} e / 611) \quad (4.35) \\
T_{Dew} &= (273.16 - (35.86 \cdot \alpha)) / (1 - \alpha) \quad (4.36)
\end{align*}

On global average NCEP/NCAR downward short wave radiation is appr. 10\% higher than ECMWF reanalysis data and 20\% higher than ERBE estimates. To correct for this systematic offset in the NCEP/NCAR downward shortwave radiation a global scaling factor of 0.89 can be applied by using an CPP switch (Section 2.6.1).
5. TIME STEPPING

5.1 Time stepping method

The motions associated with the vertically integrated velocity field (barotropic part) are solved implicitly which damps the external gravity wave mode and thus allows the use of a longer time-step in the integrations. Time stepping in MPI-OM is based on the idea of operator splitting, which is also called time splitting or method of fractional steps, as described by e.g. Press et al. (1988). The method is illustrated with the following example (taken from Press et al. (1988)).

Suppose you have an initial value equation of the form

\[ \frac{\partial u}{\partial t} = \mathcal{L} u \]  

(5.1)

where \( \mathcal{L} \) is some operator. While \( \mathcal{L} \) is not necessarily linear, suppose that it can at least be written as a linear sum of \( m \) pieces, which act additively on \( u \),

\[ \mathcal{L} u = \mathcal{L}_1 u + \mathcal{L}_2 u + \cdots \mathcal{L}_m u \]  

(5.2)

Finally, suppose that for each of the pieces, you already know a differencing scheme for updating the variable \( u \) from time-step \( n \) to time-step \( n + 1 \), valid if that piece of the operator were the only one on the right-hand side. We will write these updating symbolically as

\[ u^{n+1} = U_1(u^n, \Delta t) \]

\[ u^{n+1} = U_2(u^n, \Delta t) \]

\[ \vdots \]

\[ u^{n+1} = U_m(u^n, \Delta t) \]  

(5.3)

Now, one form of operator splitting would be to get from \( n \) to \( n + 1 \) by the following sequence of updating:

\[ u^{n+(1/m)} = U_1(u^n, \Delta t) \]

\[ u^{n+(2/m)} = U_2(u^{n+(1/m)}, \Delta t) \]

\[ \vdots \]

\[ u^{n+1} = U_m(u^{n+(m-1)/m}, \Delta t) \]  

(5.4)

This operator splitting is used in MPI-OM.
5. Time Stepping

5.2 Timestepping in the Model

The timestepping proceeds by the method of operator splitting or fractional steps as described in Section 5.1. That is, prognostic variables are updated successively in several subroutines. Prescribed forcing is read in at the start of each time-step after which the sea ice dynamics equations are solved by means of functional iteration with under relaxation. Then the sea ice thermodynamics are implemented. The ocean momentum equation is first solved partially for the friction terms and then the advection terms. This results in a partially updated momentum equation which is decomposed into baroclinic and barotropic subsystems. These are solved separately as described below. As in HOPE (Wolff et al., 1997) the prognostic equation for the free surface is solved implicitly, which allows for the model’s barotropic time-step to equal the baroclinic time-step.

All subroutine called during one time step are listed in table 5.1 and are described in the following. All symbols are explained in section 8.2 “list of variables”.

5.2.1 octher.f90

boundary forcing

TO DO: The source has to be cleaned up. Encapsulate different parameterizations. CPP flag "NURMISCH" is identical to "CDVOCON == 0". "NURDIFF" has to be default.

In ice free or non–compact ice covered areas the salinity is changed according to

\[
S_{n+1/m}\bigg|_{k=1} = S_{n}\bigg|_{k=1} + \Delta t \lambda_S \left(S_{\text{Levitus}} - S_{n}\bigg|_{k=1}\right) \cdot (1 - A) \quad (5.5)
\]

where \(A\) is the sea ice compactness. The salinity is further modified in the sea ice model due to freezing or melting processes. In addition, the sea surface temperature can relaxed to a SST climatology (Levitus et al., 1998a)

\[
\Theta_{n+1/m} = \Theta_{1} + \Delta t \lambda_T \cdot \left(\Theta_{\text{Levitus}} - \Theta_{n}\bigg|_{k=1}\right) \quad (5.6)
\]

Default for the time constants is \(\lambda_S = 3. \times 10^{-7}\) and \(\lambda_T = 0\). \(\lambda_S\) and \(\lambda_T\) can be modified in the namelist (2.1). Both are weighted with the actual thickness of the first layer with respect to a thickness of 20 m \((\lambda = \lambda_{\text{namelist}} \times 20 \text{ m}/\text{DZW(1)})\). Salinity and temperature restoring does only work if MPI-OM is not coupled to ECHAM.
<table>
<thead>
<tr>
<th>SBR name</th>
<th>Action</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>octher.f90</td>
<td>-boundary forcing on salt and temperature</td>
<td>5.2.1</td>
</tr>
<tr>
<td></td>
<td>-baroclinic pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-convective adjustment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-vertical eddy viscosity and diffusivity coefficients</td>
<td></td>
</tr>
<tr>
<td>ocice.f90</td>
<td>Sea ice model as described by Hibler (1979)</td>
<td>ch. 6</td>
</tr>
<tr>
<td>growth.f90</td>
<td>Update of ice thickness, compactness, snow depth, upper ocean temperature and salinity due to atmospheric heat and freshwater fluxes.</td>
<td></td>
</tr>
<tr>
<td>ocwind.f90</td>
<td>Update ocean velocities with the surface stress (wind forcing).</td>
<td>5.2.2</td>
</tr>
<tr>
<td>octide.f90</td>
<td>Include forcing from tides (optional).</td>
<td></td>
</tr>
<tr>
<td>ocmodmom.f90</td>
<td>Decomposition into barotropic and baroclinic field.</td>
<td>5.2.4</td>
</tr>
<tr>
<td>occlit.f90</td>
<td>Solution of the baroclinic system.</td>
<td>5.2.6</td>
</tr>
<tr>
<td>bartim.f90</td>
<td>Calculate sea level hight for the barotropic subsystem with gauss elimination and back-substitution (default).</td>
<td>5.2.7</td>
</tr>
<tr>
<td>troneu.f90</td>
<td>Calculate sea level hight for the barotropic subsystem with iterative solver (SOR, optional).</td>
<td>5.2.8</td>
</tr>
<tr>
<td>ocvtro.f90</td>
<td>Calculate new barotropic velocities.</td>
<td>5.2.9</td>
</tr>
<tr>
<td>ocvtot.f90</td>
<td>Calculate new total velocities $u$, $v$ and $w$.</td>
<td>5.2.10</td>
</tr>
<tr>
<td>ocud.f90</td>
<td>Advection of momentum analogous to $ocado.f90$ in $u$ direction.</td>
<td>5.2.11</td>
</tr>
<tr>
<td>ocvad.f90</td>
<td>Advection of momentum analogous to $ocado.f90$ in $v$ direction.</td>
<td></td>
</tr>
<tr>
<td>sloptrans.f90</td>
<td>Calculate bottom boundary layer (BBL) transport for tracer advection (optional).</td>
<td>5.2.12</td>
</tr>
<tr>
<td>ocadpo.f90</td>
<td>Computes advection with a second order total variation diminishing (TVD) scheme (Swesty, 1984). Called for temperature and salinity (optional).</td>
<td>5.2.13</td>
</tr>
<tr>
<td>ocadfs.f90</td>
<td>Compute advection with predictor-corrector scheme or the quick-scheme as proposed by Farrow and Stevens (1995) (optional).</td>
<td>5.2.14</td>
</tr>
<tr>
<td>ocjitr.f90</td>
<td>Parameterize sub grid-scale eddy-induced tracer transport following Gent et al. (1995a) (optional).</td>
<td>5.2.15</td>
</tr>
<tr>
<td>octdiff_base.f90</td>
<td>Compute tracer-independent matrices for horizontal, isopycnal diffusion.</td>
<td>5.2.16</td>
</tr>
<tr>
<td>octdiff_trf.f90</td>
<td>Calculate vertical diffusion and harmonic and biharmonic horizontal diffusion (with matrices calculated in $octdiff_base.f90$) for temperature and salinity.</td>
<td>5.2.17</td>
</tr>
<tr>
<td>relax_ts.f90</td>
<td>3-D restoring of temperature and salinity to initial conditions.</td>
<td>5.2.18</td>
</tr>
<tr>
<td>ocschep.f90</td>
<td>Harmonic horizontal diffusion of momentum.</td>
<td>5.2.19</td>
</tr>
<tr>
<td>ocvisc.f90</td>
<td>Vertical diffusion of momentum, bottom friction, biharmonic horizontal momentum diffusion</td>
<td>5.2.20</td>
</tr>
</tbody>
</table>

**Tab. 5.1:** List of subroutine calls during one time-step.
5. Time Stepping

Discharge from rivers is affecting salinity and sea surface elevation.

\[
S^{n+1/m} \bigg|_{k=1} = S^n \bigg|_{k=1} + \frac{\Delta z_w}{\Delta z_1 + \Delta R_{input}} \tag{5.7}
\]

\[
ZO^{n+1/m} = ZO + \Delta R_{input} \tag{5.8}
\]

\[
ZO^{n+1/m} = ZO + \Delta R_{input} \tag{5.9}
\]

Local river input is calculated from discharge data for the given position (see section 2.1):

\[
\Delta R_{input} = \frac{\text{discharge} \times \Delta t}{\Delta x \times \Delta y} \tag{5.10}
\]

**baroclinic pressure and stability**

Hydrostatic pressure and stratification is computed. Potential temperatures \(\Theta\) are converted to in-situ temperatures \(T\) (subroutine \texttt{adisitj.f90}) by solving the Gill (2004) formula with a Newton’s method. The density is computed in subroutine \texttt{rho1j.f90} with the UNESCO (1983) formula.

\[
p_l = g\Delta z_{w1} \rho \left( S_1^{n+2/m}, T_1^{n+2/m}, p_l(\text{ref}) \right) \tag{5.11}
\]

\[
p_k = p_{k-1} + g\Delta z_{wk} \rho \left( S_k^{n+2/m}, T_k^{n+2/m}, p_k(\text{ref}) \right) \tag{5.12}
\]

\[
\frac{\partial \rho_k}{\partial z} = \frac{1}{\Delta z_{wk}} (\rho_{k-1} - \rho_k)^{n+2/m} \tag{5.13}
\]

where the density \(\rho\) is calculated using a reference pressure

\[
p(\text{ref})_k = g\rho_0 h_k \tag{5.14}
\]

where \(h_k\) is the depth of layer \(k\).

There are several choices for parameterization of convection currently available in the MPI-OM model.

- Default in cases of unstable stratification is a combination of vertical diffusion and mixing. Other mechanisms are activated with compile flags (table 2.4).
- Compile flag "NURDIFF" disables the default mixing.
- Compile flag "UMKLAP" activates the convective adjustment. Convective adjustment follows Bryan (1969). Traditionally this technique involved the full mixing of vertically adjacent grid cells in the presence of static instability. The MPI-OM formulation is similar but only mixes the upper grid cell with an equivalent thickness of the lower grid.
cell. This approach aims to increase the penetrative depth of convection. It is done with only one sweep through the water column per timestep, i.e. for $\rho_z > 0$

$$\Theta_{k+3/m}^{n} = \frac{\Delta z_{wk-1} \Theta_{k+2/m}^{n} + \Delta z_{wk} \Theta_{k+2/m}^{n}}{\Delta z_{wk-1} + \Delta z_{wk}} \quad (5.15)$$

$$S_{k+3/m}^{n} = \frac{\Delta z_{wk-1} S_{k+2/m}^{n} + \Delta z_{wk} S_{k+2/m}^{n}}{\Delta z_{wk-1} + \Delta z_{wk}} \quad (5.16)$$

for stable stratification $\rho_z < 0$ (or ICONVA = 0)

$$\Theta_{k+3/m}^{n} = \Theta_{k}^{n+2/m} \quad (5.17)$$

$$S_{k+3/m}^{n} = S_{k}^{n+2/m} \quad (5.18)$$

If convective adjustment was active the stratification array is adjusted.

- Compile flag ”PLUME” activates the so-called ”PLUME” convection scheme (subroutine nlopps.f90). It is based on an original routine by E. Skyllingstad and T. Paluszkiewicz. It is a much more physically based parameterization based on the penetrative plume convection scheme of Paluszkiewicz and Romea (1997). Plume convection was found to significantly improve the deep water characteristics and the simulation of Southern Ocean sea ice in the HOPE model (Kim and Stössel, 2001). However, the penetrative plume convection scheme is computationally quite expensive.

- If the compile flag ”NURMISCH” is set, only the Richardson number depending coefficients are used for the diffusion. Richardson number depending coefficients for eddy viscosity and eddy diffusivity are computed every timestep (Pacanowski and Philander, 1981). Additionally, a mixed layer turbulence contribution is included.

$$A_V^{n+1} = \lambda_V A_V^n + (1 - \lambda_V) \left[ \frac{A_{V/0}}{1 + (C_{RA/Ri})^2} \right] + A_B + \delta_{\Delta T} W_T \quad (5.19)$$

$$D_V^{n+1} = \lambda_V D_V^n + (1 - \lambda_V) \left[ \frac{D_{V/0}}{1 + (C_{RD/Ri})^2} \right] + \delta_{\Delta T} W_T \quad (5.20)$$

where $0 \leq \lambda \leq 1$, $A_{V/0}$ and $D_{V/0}$ are constant values, $A_B$ is the background mixing (set to $10^{-6}$ m$^2$/s$^{-1}$), $W_T$ is a value for a wind induced mixed layer turbulence (increased turbulent viscosity and diffusivity), $\delta_{\Delta T}$ is a switch which is 1 for a vertical temperature difference to the sea surface temperature smaller than a preset $\Delta T$ and 0 elsewhere, and $Ri$ is the local Richardson number

$$Ri = -\frac{g \partial \rho / \partial z}{(\partial u / \partial z)^2 + (\partial v / \partial z)^2} \quad (5.21)$$
Eqs. (5.19) and (5.20) are slightly modified with respect to the original formulations by Pacanowski and Philander (1981).

- If the compile flag "NURMISCH" is not set, in cases of unstable stratification the coefficient is replaced by the mixing term "CDVOCON" which is set in the namelist (table 2.1), if "CDVOCON" is larger than the Richardson coefficient. This leads to a greatly enhanced vertical diffusion in the presence of static instability (e.g. Marotzke, 1991; Klinger at al., 1996). Such an approach avoids the excessive intermediate mixing associated with the traditional adjustment scheme by introducing a timescale associated with the choice of (constant) convective-diffusion coefficient.

5.2.2 ocwind.f90

TO DO: Clean Up, get rid of "SICOMU" and "SICOMV".

Wind stress and ice stress (per unit density) are added to the ocean velocities.

\[
u^{n+1/m} = u^n + \Delta t \frac{\tau_{\text{wind}}}{\Delta z_{w1}} \cdot (1 - A) + \Delta t \frac{\tau_{\text{ice}}}{\Delta z_{w1}} \cdot A \quad (5.22)
\]

\[
v^{n+1/m} = v^n + \Delta t \frac{\tau_{\text{wind}}}{\Delta z_{w1}} \cdot (1 - A) + \Delta t \frac{\tau_{\text{ice}}}{\Delta z_{w1}} \cdot A \quad (5.23)
\]

\(A\) is the sea ice compactness. The ice stress is computed in subroutine ocice.f90.

5.2.3 ocice.f90

The sea ice model is computed in routine ocice.f90 and its subroutines growth.f90, budget.f90 and obudget.f90. A detailed described is given in chapter "Sea Ice Model".

In addition, the penetration of solar radiation is described in ocice.f90 by a simple vertical profile, constant with latitude and longitude.

\[
\frac{I}{I_0} = (1 - R)e^{(z/D)} \quad (5.24)
\]

The radiation profile is converted to an absorption profile and used to update the temperatures. There is no heat-flux through the bottom of the ocean, so all remaining heat is absorbed in the bottom layer. If the marine biogeochemical model HAMOCC is included, there is an option to calculate the absorption as a function of chlorophyll.
5.2. Timestepping in the Model

5.2.4 ocmodmom.f90

The velocity fields ($v = (u, v)$) are decomposed into barotropic (vertically averaged) and baroclinic parts

\[ V = \int_{-H}^{0} v \, dz \quad (5.25) \]

\[ v' = v - \frac{1}{H} \int_{-H}^{0} v \, dz \quad (5.26) \]

The definition of $V = (U, V)$ was chosen to be consistent with the coding, i.e. it is the barotropic transport mode not a velocity.

5.2.5 ocbarp.f90

TO DO: No real function. Fill common block VSE, VZE, USO, UZO. Move to "bartim.f90" ????

5.2.6 occlit.f90

Solution of the baroclinic system. See section 5.3

5.2.7 bartim.f90

Calculate sea level height for the barotropic subsystem with an implicit method. The equations are solved with a Gaussian triangulation method. Requires the subroutines ocbarp.f90 and trian.f90. See section 5.3.

5.2.8 troneu.f90

If the compile flag "SOR" is set (table 2.4), the equations for the barotropic subsystem are solved by iteration which requires less memory, but considerably more cpu time. Requires the subroutines itprep.f90 and trotest.f90. See section 5.3.

5.2.9 ocvtro.f90

The “new” sea level values are used to calculate new barotropic velocities.
5. Time Stepping

5.2.10 ocvtot.f90

- Baroclinic and barotropic velocities are added to give total velocity fields. The vertical velocity component is calculated from the continuity equation ($h$ is layer thickness)

\[
\frac{\partial w^{n+1}}{\partial z} = -\beta \left[ \frac{\partial}{\partial x} (hu^{n+1}) + \frac{\partial}{\partial y} (hv^{n+1}) \right] \\
-(1 - \beta) \left[ \frac{\partial}{\partial x} (hu^{n}) + \frac{\partial}{\partial y} (hv^{n}) \right]
\]

(5.27)

The total velocity field of the new time step is available in this subroutine for further use (e.g. for diagnostics and post-processing).

- A very powerful consistency test for the barotropic implicit system and/or the correct back-substitution is available at this point, i.e. the consistency of sea level change with the vertical velocity at $z=0$

\[
\frac{\partial \zeta}{\partial t} - w|_{z=0} = 0
\]

(5.28)

The results of this test should be of round-off-error precision (modified by the effects of twofold differencing, empirically: $10^{-8}$).

- Update time levels of velocity and sea level fields.

- Time memory of viscous dissipation according to local rate of strain $\text{TURB}_{E/O}$.

5.2.11 ocuad.f90 and ocvad.f90

Advection of momentum analogous to ocadpo.f90 in u and v direction.

5.2.12 slopetrans.f90

Calculate bottom boundary layer (BBL) transport for tracer advection. For more details see section 4.2.1.

5.2.13 ocadpo.f90

TO DO: BBL and ocadpo are not default. Is it necessary to compute the new vertical velocities in ocadpo (20 times with BGC)?
5.2. Timestepping in the Model

First, new vertical velocities are calculated, including the BBL transport velocities. Second, advection of scalar traces is computed with a second order total variation diminishing (TVD) scheme (Sweby, 1984). The total variation of a solution is defined as:

$$TV_{u_{n+1}} = \sum_k u_{k+1}^{n+1} - u_k^{n+1}$$  \hspace{1cm} (5.29)

A difference scheme is defined as being total variation diminishing (TVD) if:

$$TV_{u_{n+1}} \leq TV_{u^n}$$  \hspace{1cm} (5.30)

Momentum advection of tracers is by a mixed scheme that employs a weighted average of both central-difference and upstream methods. The weights are chosen in a two step process. First, according to the ratio of the first minus the second spatial derivative over the first spatial derivative of the advected quantity $T$,

$$r = \max \left\{ 0, \frac{|T'| - |T''|}{|T'|} \right\}$$  \hspace{1cm} (5.31)

with $T' = T_{k-1} - T_{k+1}$ and $T'' = T_{k-1} + T_{k+1} - 2T_k$. If the second derivative is small usage of central-differencing is save and therefore favorable. In contrast, if the first derivative is small and the second derivative is large there is an extrema in the middle and an upstream scheme is preferred.

In a second step the ratio is weighted with strength of the flow (the time it takes to fully ventilate the grid-box). Water transport in and out of a grid-box is given as:

$$U_{in} = 0.5 \cdot \delta t \cdot \delta x \cdot \delta y \cdot (w_k + |w_{k-1}|)$$

$$U_{out} = 0.5 \cdot \delta t \cdot \delta x \cdot \delta y \cdot (|w_{k+1}| - w_{k+1})$$  \hspace{1cm} (5.32)

The total weight $R$ is defined as:

$$R = \min \left\{ 1, \frac{\delta x \cdot \delta y \cdot \delta z}{U_{in} + U_{out}} \cdot r \right\}$$  \hspace{1cm} (5.33)

If the flow is weak and $r$ is small, the magnitude of this ratio is less than 1 and the weights favor usage of central-differencing. With a stronger flow or a larger $r$ the upstream scheme is preferred. The idea is to incorporate the benefit of positive-definiteness of the upstream scheme (and thus limit numerically spurious tracer sources and sinks), while avoiding large implicit numerical diffusion in regions where strong gradients exist in the tracer field.

Advection is computed as follows. Tracer transport in and out of a grid-box is defined as:

$$T_{in} = U_{in} \cdot (1 - R) \cdot T_k + R \cdot 0.5 \cdot (T_k + T_{k-1})$$

$$T_{out} = U_{out} \cdot (1 - R) \cdot T_k + R \cdot 0.5 \cdot (T_k + T_{k+1})$$  \hspace{1cm} (5.34)
5. Time Stepping

The new tracer concentration $T^{n+1}_k$ is given by the old concentration $T^n_k$ plus tracer in-, and out-fluxes, normalized by the "new" volume of the grid-box (volume plus in-, and out-fluxes of water).

\[
T^{n+1}_k = \left( T^n_k \cdot \delta x \cdot \delta y \cdot \delta z + T_{in,k+1} - T_{in,k} - T_{out,k} + T_{out,k-1} \right) \cdot \frac{1}{V_{\text{new}}} \\
V_{\text{new}} = \delta x \cdot \delta y \cdot \delta z + U_{in,k+1} - U_{in,k} - U_{out,k} + U_{out,k-1}
\]  

(5.35)

5.2.14 ocdfs.f90

Compute advection with either a predictor-corrector scheme or with the quick-scheme as proposed by Farrow and Stevens (1995). This routine does not work with BBL transport (5.2.12).

5.2.15 ocjitr.f90

Parameterize sub grid-scale eddy-induced tracer transport following Gent et al. (1995a). The advection at the end is done with an upwind scheme.

5.2.16 octdiff_base.f90

Tracer-independent matrices for horizontal, isopycnal diffusion are computed for use in octdiff_trf.f90. See also equation 4.20 in chapter 4.

5.2.17 octdiff_trf.f90

Calculate vertical diffusion and harmonic and biharmonic horizontal diffusion (with matrices calculated in octdiff_base.f90) for scalar tracers (temperature and salinity).

5.2.18 relax_ts.f90

3-D restoring of temperature and salinity to initial conditions (Levitus et al., 1998b).

5.2.19 ocschep.f90

Harmonic horizontal diffusion of momentum.
5.3 Baroclinic and Barotropic Subsystem

5.2.20 ocvisc.f90

TO DO: clean up, TRIDSY to TRIDSY(i,j,k) as in HAMOCC routine oct-diff_bgc.f90?

Horizontal velocities are modified due to bottom friction, vertical harmonic momentum diffusion and horizontal biharmonic momentum diffusion. The vertical diffusion uses the vertical friction "avo" calculated in oocther.f90.

5.3 Baroclinic and Barotropic Subsystem

Denoting the internal baroclinic pressure divided by reference density as $p'$, and the three dimensional baroclinic velocities as $(u', v', w')$, the partially updated baroclinic momentum equations can be expressed by

\[
\frac{\partial u'}{\partial t} - f v' = \frac{1}{H} \int_{-H}^{\zeta} \frac{\partial p'}{\partial x} dz - \frac{\partial p'}{\partial x} \tag{5.36}
\]

\[
\frac{\partial v'}{\partial t} + f u' = \frac{1}{H} \int_{-H}^{\zeta} \frac{\partial p'}{\partial y} dz - \frac{\partial p'}{\partial y} \tag{5.37}
\]

where $x, y, z$ and $t$ indicate the curvilinear parallel, curvilinear meridional, vertical and temporal dimensions respectively. The local depth is given by $H$, $\zeta$ is the sea surface displacement from the z-coordinate uppermost surface, and $f$ is the Coriolis parameter. Assuming only disturbances of small amplitude (linearization) allows the vertical density advection to be expressed as $\frac{\partial \rho}{\partial z} = -w \frac{\partial \rho}{\partial z}$. This can be combined with the time derivative of the hydrostatic approximation $(\frac{\partial p^2}{\partial z \partial t} = -g \frac{\partial \rho}{\partial t})$ to give an equation for the time evolution of the linearized internal baroclinic pressure

\[
\frac{\partial^2 p'}{\partial z \partial t} = \frac{w g}{\rho_0} \frac{\partial \rho}{\partial z} \tag{5.38}
\]

Then the baroclinic subsystem is closed with the baroclinic continuity equation.

\[
\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} + \frac{\partial w'}{\partial z} = 0 \tag{5.39}
\]

Introducing the superscripts $n$ and $n+1$ to denote old and new time levels respectively, the time discretization of the partially updated linearized baroclinic subsystem can then be written as

\[
u^{n+1} - u^n = \alpha \Delta t \left(f v^{n+1} + \frac{1}{H} \int_{-H}^{\zeta} p_x^{n+1} dz - p_x^n \right) + (1 - \alpha) \Delta t \left(f v^n + \frac{1}{H} \int_{-H}^{\zeta} p_x^n dz - p_x^n \right) \tag{5.40}
\]
\[ v^{n+1} - v^n = \alpha \Delta t \left( -f u^{n+1} + \frac{1}{H} \int_{-H}^{\zeta} p_y^{n+1} \, dz - p_y^n \right) \]
\[ + (1 - \alpha) \Delta t \left( -f u^n + \frac{1}{H} \int_{-H}^{\zeta} p_y^n \, dz - p_y^n \right) \]  
\[ (5.41) \]
\[ p_z^{n+1} - p_z^n = \frac{g}{\rho_0} \Delta t \rho_z \left( \beta w^{n+1} + (1 - \beta) w^n \right) \]  
\[ (5.42) \]

Here \( \Delta t \) is the model’s timestep, and \( 0 \leq \alpha, \beta \leq 1 \) are stability coefficients partially weighting the new velocities to the old velocities. For stability reasons it is required that \( \alpha \geq 1 - \alpha \) and \( \beta \geq 1 - \beta \). In the semi-implicit case where \( \alpha = \beta = \frac{1}{2} \) the system is neutrally stable, but similar to the familiar leapfrog-scheme this tends to produce a computational mode with \( 2 \Delta t \) oscillations. These are suppressed by the choice \( \alpha = 0.55 \) and \( \beta = 0.5 \).

The system is solved iteratively with the old baroclinic velocities used as a first guess.

For the partially updated barotropic subsystem, the momentum equations are
\[ \frac{\partial U}{\partial t} - fV + gH \frac{\partial \zeta}{\partial x} + \int_{-H}^{\zeta} \frac{\partial}{\partial x} p' \, dz = 0 \]  
\[ (5.43) \]
\[ \frac{\partial V}{\partial t} + fU + gH \frac{\partial \zeta}{\partial y} + \int_{-H}^{\zeta} \frac{\partial}{\partial y} p' \, dz = 0 \]  
\[ (5.44) \]

where \( U \) and \( V \) are the partially updated barotropic velocities on the model’s curvilinear grid. The barotropic subsystem is closed with a continuity equation accounting for the time derivative of the sea level \( \zeta \)
\[ \frac{\partial \zeta}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = Q_\zeta \]  
\[ (5.45) \]

where the forcing term \( Q_\zeta \) represents the surface freshwater flux (see Eqn 4.30 below). The sea level is partially updated according to \( Q_\zeta \) before the baroclinic subsystem is solved and so is ignored in the following time discretization.

Denoting the partially updated sea level by \( \zeta' \), the discretized partially updated barotropic subsystem can then be written as
\[ U^{n+1} - U^n - f \Delta t \left( \alpha V^{n+1} + (1 - \alpha) V^n \right) \]
\[ + gH \Delta t \left( \alpha \zeta_x^{n+1} + (1 - \alpha) \zeta_x^n \right) + \Delta t \int_{-H}^{\zeta} \frac{\partial}{\partial x} p_x^{n+1} \, dz = 0 \]  
\[ (5.46) \]
\[ V^{n+1} - V^n + f \Delta t \left( \alpha U^{n+1} + (1 - \alpha) U^n \right) \]
\[ + gH \Delta t \left( \alpha \zeta_y^{n+1} + (1 - \alpha) \zeta_y^n \right) + \Delta t \int_{-H}^{\zeta} \frac{\partial}{\partial y} p_y^{n+1} \, dz = 0 \]  
\[ (5.47) \]
\[ \zeta'^{n+1} - \zeta'^n + \Delta t \left( \beta(U_x^{n+1} + V_y^{n+1}) + (1 - \beta)(U_x^n + V_y^n) \right) = 0 \]  
\[ (5.48) \]

where the partial temporal relaxation weights \( \alpha \) and \( \beta \) are the same as for the baroclinic subsystem. The set of equations 5.46, 5.47 and 5.48
is rearranged into matrix form and solved by Gaussian elimination with back substitution. Alternatively, when the model dimensions exceed the availability of core computing memory, the matrix can be solved iteratively using successive over-relaxation. For a discussion of how the implicit free surface approach of MPI-OM compares with explicit treatment of the free surface the reader is referred to Griffies et al. (2000).

Momentum advection of tracers is by a mixed scheme that employs a weighted average of both central-difference and upstream methods. The weights are chosen according to the ratio of the second spatial derivative over the first spatial derivative of the advected quantity. When the magnitude of this ratio is less than 1 the weights favor usage of central-differencing, and when greater than 1 the upstream scheme is preferred. The idea is to incorporate the benefit of positive-definiteness of the upstream scheme (and thus limit numerically spurious tracer sources and sinks), while avoiding large implicit numerical diffusion in regions where strong gradients exist in the tracer field.
6. SEA ICE MODEL

The sea ice model in routine `ocice.f90` and its subroutines `growth.f90`, `budget.f90` and `obudget.f90` consists of three parts: the dynamics of sea ice circulation, the thermodynamics of sea ice growth and melt and the thermohaline coupling to the ocean model (brine rejection). The following description is mostly identical to Marsland et al. (2003) and very similar to the HOPE model description by Wolff et al. (1997).

6.1 Sea Ice Dynamics

Sea ice motion is determined by a two-dimensional momentum balance equation.

\[
\frac{d\vec{v}_i}{dt} + f(\hat{k} \times \vec{v}_i) = -g \nabla \zeta + \frac{\tau_a}{\rho_i h_i} + \frac{\tau_o}{\rho_i h_i} + \nabla \cdot \sigma_{mn} \tag{6.1}
\]

Here \( f, \hat{k}, \zeta, g, \) and \( t \) are as in Eqn 4.1. Sea ice of thickness \( h_i \) and density \( \rho_i \) has a velocity \( \vec{v}_i \) which responds to wind stress \( \tau_a \), ocean current stress \( \tau_o \), and an internal ice stress represented by the two dimensional stress tensor \( \sigma_{mn} \). It is noted that inclusion of the nonlinear (advective) terms in Eqn 6.1 considerably reduces the model time-step. For the standard MPI-OM setup considered in Section 4.3.3 the time-steps with and without the advective terms are 15 and 36 minutes respectively. To reduce computational expenditure the nonlinear terms were therefore neglected in the simulations considered here. In Eqn. 6.1 the stress terms are in units of N m\(^{-2}\). From above \( \tau_a \) is taken as prescribed forcing, while from below \( \tau_o \) is parameterized as

\[
\tau_o = \rho_o C_W |\vec{v}_1 - \vec{v}_i| (\vec{v}_1 - \vec{v}_i) \tag{6.2}
\]

where \( \vec{v}_1 \) is the upper ocean layer velocity and the constant coefficient of bulk momentum exchange is given by \( C_W \). Currently no turning angles are employed for the atmosphere and ocean/ice stress terms.

The choice of sea ice rheology \( \sigma_{mn} \) determines the way in which ice flows, cracks, ridges, rafts and deforms. Following Hibler (1979) internal sea ice stress is modeled in analogy to a nonlinear viscous compressible fluid obeying the constitutive law

\[
\sigma_{mn} = 2\eta \dot{\epsilon}_{mn} + \left\{ (\xi - \eta)(\dot{\epsilon}_{11} + \dot{\epsilon}_{22}) - \frac{P_i}{2} \right\} \delta_{mn} \tag{6.3}
\]
where $\dot{\epsilon}_{mn}$ is the strain rate tensor and $\delta_{mn}$ ($m, n \in \{1, 2\}$) is the Kronecker delta. The internal sea ice pressure $P_i$ is a function of sea ice thickness $h_i$ and subgridscale areal fractional sea ice compactness

$$P_i = P^* h_i e^{-C(1-I)}$$

(6.4)

where $P^*$ and $C$ are empirically derived constants. The pressure is related to the nonlinear bulk $\xi$ and shear $\eta$ viscosities according to:

$$\xi = \frac{P_i}{2\Delta} ; \eta = \frac{\xi}{e^2}$$

(6.5)

$$\Delta = \left[ (\dot{\epsilon}_{11}^2 + \dot{\epsilon}_{22}^2) \left( 1 + \frac{1}{e^2} \right) + 4 \dot{\epsilon}_{12}^2 \frac{1}{e^2} + 2 \dot{\epsilon}_{11} \dot{\epsilon}_{22} \left( 1 - \frac{1}{e^2} \right) \right]^{1/2}$$

(6.6)

Here $e$ is the ratio of the lengths of the principal axes of the yield ellipse (these correspond to the principal components in stress space, i.e. $\sigma_{11}$ and $\sigma_{22}$ from Eqn 6.3). The yield ellipse discriminates between linear-viscous (internal) and plastic (boundary) points in stress space, while exterior points cannot be reached. Numerical problems arise when the strain rates are small. Then the $\Delta$ in Eqn 6.6 approaches zero, and the viscosities in Eqn 6.5 approach infinity. Following Hibler (1979), the problem is avoided by choosing the viscosities to be a maximum of their function value given in Eqn 6.5, and an empirically chosen maximum value corresponding to the function value when $\Delta = \Delta_{\text{min}} = 2.0 \times 10^{-9} \text{s}^{-1}$.

### 6.2 Sea Ice Thermodynamics

Thermodynamics of sea ice involves the determination of the local growth or melt rate at the base of the sea ice and the local melt rate at the surface. To allow for the prognostic treatment of the subgridscale fractional sea ice cover the surface heat balance is solved separately for the ice covered and ice free areas. That is, the net atmospheric heat flux $Q_a$ is weighted according to the open water heat flux $Q_w$ and heat flux over sea ice (or sea ice and snow) $Q_i$.

$$Q_a = (1 - I)Q_w + IQ_i$$

(6.7)

A thermodynamic equilibrium is sought at the interface between the atmosphere and the sea ice/snow layer. An initial solution $T^*_{\text{srf}}$ is found for the sea ice/snow layer surface temperature $T_{\text{srf}}$ from the energy balance equation

$$Q_i + Q_{\text{cond}} = 0.$$  

(6.8)

The conductive heat flux $Q_{\text{cond}}$ within the sea ice/snow layer is assumed to be directly proportional to the temperature gradient across the sea ice/snow
6.2. Sea Ice Thermodynamics

Layer and inversely proportional to the thickness of that layer (i.e. the so-called zero-layer formulation of Semtner, 1976).

\[
Q_{\text{cond}} = k_i \frac{(T_{\text{freeze}} - T_{\text{srf}})}{\tilde{h}_i}
\]  

(6.9)

Here \( k_i \) is the thermal conductivity of sea ice, \( T_{\text{freeze}} \) the freezing temperature of sea water and \( \tilde{h}_i \) the effective thermodynamic sea ice thickness of the sea ice/snow layer. This effective thickness is defined to be

\[
\tilde{h}_i = \frac{1}{I} \left( h_i + h_s \frac{k_i}{k_s} \right)
\]  

(6.10)

where \( h_s \) is the snow layer thickness and \( k_s \) is the thermal conductivity of the snow. The ratio of the thermal conductivity of sea ice with respect to that of snow is approximately 7. This means that snow is seven times more effective as an insulator against oceanic heat loss to the atmosphere than sea ice. Hence, even a relatively thin snow cover will result in a much increased effective sea ice thickness. Atmospheric precipitation is converted to snow fall when \( T_a \) is below 0°C. Snow loading on the sea ice may result in the submerging of the sea ice/snow interface. In such cases the thickness of the snow draft is converted to sea ice. Since the heat of fusion of snow is slightly greater than the heat of fusion of sea ice this process results in a net heat gain to the sea ice/snow layer. To close the heat balance of the conversion process a small additional amount of snow is also melted.

When the initial solution \( T_{\text{srf}}^* \) in Eqn 6.9 is greater than 0°C the left-hand side of Eqn 6.8 is recalculated with \( T_{\text{srf}} \) replaced by 0°C and the resultant energy is used to melt snow and then sea ice from above. In the case where the entire sea ice/snow layer is melted from above any remaining heat is added to \( Q_w \) in Eqn 6.7.

To complete the sea ice thermodynamic evolution a heat balance equation must also be applied at the ocean/sea ice and ocean/atmosphere interfaces. The balance equation takes the form

\[
\rho_w c_w \Delta z_1 \frac{\partial \hat{\theta}_1}{\partial t} = (1 - I)Q_w + I(Q_{\text{cond}} - \tilde{h}_i \rho_i L_i)
\]  

(6.11)

and is solved for an interim upper layer oceanic temperature \( \hat{\theta}_1 \). Here \( c_w \) is the specific heat capacity of sea water, \( L_i \) is the latent heat of fusion of sea ice and \( \Delta z_1' \) is the thickness of the upper ocean layer, given by

\[
\Delta z_1' = \Delta z_1 + \zeta - h_{\text{draft}}
\]  

(6.12)

where \( \Delta z_1 \) is the defined constant thickness of the ocean model’s upper layer. The draft of the sea ice/snow layer \( h_{\text{draft}} \) is given by

\[
h_{\text{draft}} = \frac{1}{\rho_w} (\rho_i h_i + \rho_s h_s)
\]  

(6.13)
where $\rho_i$ and $\rho_s$ are the densities of the sea ice and snow layers respectively. Note that the treatment of a sea ice draft is purely for thermodynamic considerations, and that the ocean momentum balance is not effected. The embedding of sea ice into the upper ocean layer, as opposed to allowing sea ice to exist in multiple ocean layers, is for computational convenience. However, such treatment introduces an upperbound to the sea thickness. In MPI-OM the sea ice draft is not allowed to remain above a local maximum sea ice draft specified as

$$h_{\text{maxdraft}} = 0.7(\Delta z_1 + \zeta).$$  \hspace{1cm} (6.14)

Any additional sea ice draft is converted to water in a salt (but currently not heat) conserving way. It is noted that this critical sea ice thickness is never reached in simulations using the standard grid of MPI-OM (Section 4.3.3) forced with OMIP (Section 4.5) or NCEP (Section 4.6) surface forcing. For the sea ice undersurface to be in thermal equilibrium with the upper ocean it is required that $T_{\text{melt}} \leq \theta_1 \leq T_{\text{freeze}}$. To maintain this inequality sea ice/snow is melted when the solution for $\hat{\theta}_1$ from Eqn 6.11 is above $T_{\text{melt}}$ and new sea ice is formed when $\hat{\theta}_1$ is below $T_{\text{freeze}}$. For the purposes of this study the effect of salinity on the freezing and melting temperatures is ignored and constant values of $T_{\text{freeze}}$ and $T_{\text{melt}}$ are used. The model upper layer ocean temperature $\theta_1$ is only allowed to rise above $T_{\text{melt}}$ when all of the sea ice/snow layer has been melted within a grid cell. Then the new upper ocean temperature $\theta_1$ and the change in sea ice thickness $\Delta h_i$ are given by

$$\theta_1 = \hat{\theta}_1 - \min \left\{ \frac{h_i \rho_i L_f}{\rho_w c_w \Delta z_1}, \frac{T_{\text{melt}}}{\rho_i L_f} \right\}$$  \hspace{1cm} (6.15)

$$\Delta h_i = \max \left\{ (T_{\text{freeze}} - \hat{\theta}_1) \frac{\rho_w c_w \Delta z_1^f}{\rho_i L_f}, 0 \right\}.$$  \hspace{1cm} (6.16)

For freezing conditions, the upper ocean temperature and the sea ice thickness change are

$$\theta_1 = T_{\text{freeze}}$$  \hspace{1cm} (6.17)

$$\Delta h_i = \frac{\hat{\theta}_1 - T_{\text{freeze}}}{\rho_i L_f} \rho_w c_w \Delta z_1^f.$$  \hspace{1cm} (6.18)

Subgridscale thermodynamic processes of sea ice growth and melt are assumed to effect the sea ice compactness within a grid cell in the following ways. When freezing occurs over open water areas the sea ice compactness increases (i.e. leads concentration decreases) at a rate given by

$$\Delta I_{\text{thin}} = \max \left\{ \frac{\Delta h_{i,\text{thin}}^1 (1 - I)}{h_o \Delta t}, 0 \right\}$$  \hspace{1cm} (6.19)

where $\Delta t$ is the model time-step, $\Delta h_{i,\text{thin}}^1 = \Delta t Q_w / (\rho_i L_f)$ is thermohaline coupling to the ocean model the thickness of new sea ice formed and $h_o$ is an
6.3. Update of Salinity (Brine Rejection)  

arbitrary demarcation thickness (taken to be 0.5 m following Hibler, 1979). When melting of thick sea ice occurs the sea ice compactness decreases (i.e. leads concentration increases) at a rate given by

\[ \Delta I^{\text{thick}} = \min \left\{ \frac{\Delta h_i^{\text{thick}}}{2h_i \Delta t}, 0 \right\} \]  

(6.20)

where \( \Delta h_i^{\text{thick}} \) is the change in sea ice thickness due to the melting. This formulation is based on the assumption that sea ice thickness within a grid cell has a uniform distribution between 0 and \( 2h_i \). The change in compactness of sea ice due to thermodynamic lead opening and closing is then calculated as the sum of both these terms.

\[ \frac{\partial I}{\partial t} = \Delta I^{\text{thin}} + \Delta I^{\text{thick}} \]  

(6.21)

6.3 Update of Salinity (Brine Rejection)

Completion of the sea ice thermohaline coupling to the ocean model requires consideration of salt and fresh water exchanges during sea ice growth and melt. Sea ice is assumed to have a constant salinity independent of it’s age and denoted by \( S_{\text{ice}} \). While multi-year Arctic sea ice has a salinity of around 3 psu, thinner ice in both hemispheres has a much higher salinity (Cox and Weeks, 1974; Eicken, 1992). For the simulations with the standard grid (Section 4.3.3) an intermediate value of 5 psu representing this global diversity has been chosen. The ocean model’s upper layer salinity \( S_1 \) is changed by an amount \( \Delta S \) due to the surface fresh water flux (modified by snow fall which accumulates on top of the sea ice) and due to sea ice growth or melt, according to:

\[ (S_1 + \Delta S) \Delta z^{\text{old}} + \frac{\rho_i}{\rho_w} S_{\text{ice}} h_i^{\text{old}} = S_1 \Delta z^{\text{new}} + \frac{\rho_i}{\rho_w} S_{\text{ice}} h_i^{\text{new}} \]  

(6.22)

Here \( \Delta z^{\text{old}} \) is the upper ocean layer thickness accounting for sea surface elevation and sea ice draft as in Eqn 6.12, and also for the atmospheric precipitation minus evaporation. \( \Delta z^{\text{new}} \) is \( \Delta z^{\text{old}} \) modified by the new sea ice draft due to melt or growth, and \( h_i^{\text{new}} - h_i^{\text{old}} \) is the amount of sea ice growth (if positive) or melt (if negative).

6.4 Subroutines

- Subroutine growth.f90 calculates the ice thickness, compactness, snow depth, upper ocean temperature and salinity due to atmospheric heat and freshwater fluxes.
• Subroutine `budget.f90` calculates the growth rates for the ice covered part of a grid cell with standard bulk formulas. First, the snow or ice skin temperature and the surface residual heat flux at the interface to the atmosphere and at the bottom are computed. Second, surface melt of snow or ice and bottom ablation or aggregation are deduced.

• Subroutine `obudget.f90` calculates growth rates of new ice in the ice free part of a grid cell with bulk formulas or the net atmospheric heat flux at the water-atmosphere interface.
7. DIAGNOSTIC AND MEAN OUTPUT

MPI-OM generates a large number of output files. Most of them are mean values of ocean properties (temperature, salinity ...). In addition, there is mean output for diagnostic and flux variables, as well as grid, forcing or coupling (ECAHM) information. Time averaging is controlled by the namelist (see 2.1) variable IMEAN. The number of output can be controlled with CPP switches (see 2.6.1). Each code is written into a separate file named fort.unit according to the unit the file is written to. The file format is EXTRA. Tables 7.2 to 7.7 given an overview over all possible output codes. This chapter deals with the structure of the MPI-OM output and the coding behind some of the diagnostic variables of which the meaning might not be straight-forward.

<table>
<thead>
<tr>
<th>SBR name</th>
<th>Action</th>
<th>CPP flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>mo_commodiag.f90</td>
<td>Define variables for the mean diagnostic output.</td>
<td></td>
</tr>
<tr>
<td>mo_mean.f90</td>
<td>Define all variables for mean model output.</td>
<td>MEAN</td>
</tr>
<tr>
<td>mo_commconv.f90</td>
<td>Define variables for the mean depth of convection</td>
<td>CONVDIAG</td>
</tr>
<tr>
<td>diag_ini.f90</td>
<td>Diagnostic output for the time-series is initialized.</td>
<td>begin timestepping</td>
</tr>
<tr>
<td>after ocvtot.f90</td>
<td>new total velocities ( u, v ) and ( w ) are available</td>
<td></td>
</tr>
<tr>
<td>wrte_mfl.f90</td>
<td>write divergence free velocity just after the new velocities are computed</td>
<td>MFLDIAG</td>
</tr>
<tr>
<td>diagnosis.f90</td>
<td>prepare diagnostic output (see 7.1.1)</td>
<td></td>
</tr>
<tr>
<td>after octdiff_trf.f90</td>
<td>advection and diffusion of tracers is done</td>
<td></td>
</tr>
<tr>
<td>wrte_mean.f90</td>
<td>write mean output</td>
<td>MEAN</td>
</tr>
<tr>
<td>wrte_amlldiag.f90</td>
<td>write max. monthly mixed layer depth</td>
<td>AMLDDIAG</td>
</tr>
<tr>
<td></td>
<td>end of one month</td>
<td></td>
</tr>
<tr>
<td>wrte_konvdiag.f90</td>
<td>write convection overturning</td>
<td>KONVDIAG</td>
</tr>
<tr>
<td>wrte_gridinfo.f90</td>
<td>write grid information</td>
<td>GRIDINFO</td>
</tr>
<tr>
<td></td>
<td>end of one year</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 7.1: List of diagnostic and output subroutine calls in the order in which they are called.
7. Diagnostic and Mean Output

7.1 Subroutines

All subroutine calls for diagnostic and mean output in successive order are listed in table 5.1. A complete list of subroutines called during one time-step is given in table 5.1.

7.1.1 diagnosis.f90

Compute diagnostic output for the time-series and mean output. Write the time-series once a day.

mixed layer depth

Mixed layer depth (variable ZMLD) is computed based on the density difference criterion \( \sum_k \delta \rho_{\text{insitu}}(z) < 0.125 \text{kg/m}^3 \); the depth where the density has increased by 0.125 kg/m\(^3\) as compared to the value in the surface box.

The monthly maximum of the variable ZMLD is stored in the variable AMLD (see table 7.2).

barotropic stream function

The vertically integrated, horizontal barotropic stream function (variable PSIUWE) is computed as \( \Psi_{(i,j)} = \sum_k \sum_j \delta x \cdot \delta z \cdot v_y \). The stream function is also used for the time-series output for the golf stream and the Kuroshio, as well as for Banda, Drake and Bering strait transports.

7.1.2 wrte_mean.f90

Compute the heat flux and the sea ice transport in x- and y-direction. Average (daily, monthly or yearly) and write the mean and diagnostic output.

7.1.3 wrte_mfl.f90

Average (daily, monthly or yearly) and write the u- and v-velocities just after the new total velocities \( u, v \) and \( w \) have computed in ovvtot.f90. At this point in time, the velocity field is divergence free. Velocities written in wrte_mean.f90 at the end of the time-step have already been updated by various processes such as the slope-convection.
### 7.2. Output Files

The following tables give an overview of all available output fields with variable names, units and the EXTRA format code numbers. Most output is optional and can be switched on with CPP compile flags (table 2.5).

**Tab. 7.2:** Code Table for MPI-OM mean output.

(x): Reasonable in the coupled setup.

M: Can be switched on with CPP flag MEAN.

<table>
<thead>
<tr>
<th>Code</th>
<th>Content</th>
<th>L.</th>
<th>Variable</th>
<th>Unit</th>
<th>fort.x</th>
<th>CPP</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>temperature</td>
<td>40</td>
<td>THO (P,R)</td>
<td>C</td>
<td>71</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>5</td>
<td>salinity</td>
<td>40</td>
<td>SAO (P,R)</td>
<td>psu</td>
<td>72</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>3</td>
<td>x velocity</td>
<td>40</td>
<td>UKO (P,R)</td>
<td>m/s</td>
<td>73</td>
<td>M</td>
<td>( )</td>
</tr>
<tr>
<td>4</td>
<td>y velocity</td>
<td>40</td>
<td>VKE (P,R)</td>
<td>m/s</td>
<td>74</td>
<td>M</td>
<td>( )</td>
</tr>
<tr>
<td>303</td>
<td>x velocity (divergence free)</td>
<td>40</td>
<td>UKOMFL (P,R)</td>
<td>m/s</td>
<td>303</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>304</td>
<td>y velocity (divergence free)</td>
<td>40</td>
<td>VKEMFL (P,R)</td>
<td>m/s</td>
<td>304</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>8</td>
<td>insitu density</td>
<td>40</td>
<td>RHO (D,?)</td>
<td>kg/m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>pressure</td>
<td>40</td>
<td>PO (?)</td>
<td>Pa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>freshwater flux by restoring</td>
<td>1</td>
<td>EMINPO</td>
<td>m/s</td>
<td>79</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>total heat-flux</td>
<td>1</td>
<td>FLUM</td>
<td>W/m²</td>
<td>84</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>79</td>
<td>total freshwater flux</td>
<td>1</td>
<td>PEM</td>
<td>m/s</td>
<td>85</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>13</td>
<td>ice thickness</td>
<td>1</td>
<td>SICTHO (P,R)</td>
<td>m</td>
<td>86</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>15</td>
<td>ice compactness</td>
<td>1</td>
<td>SICOMO (P,R)</td>
<td>frac.</td>
<td>87</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>35</td>
<td>x ice velocity</td>
<td>1</td>
<td>SICUO (P,R)</td>
<td>m/s</td>
<td>88</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>36</td>
<td>y ice velocity</td>
<td>1</td>
<td>SICVE (P,R)</td>
<td>m/s</td>
<td>89</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>141</td>
<td>snow thickness</td>
<td>1</td>
<td>SICSNOW (P,R)</td>
<td>m</td>
<td>136</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>176</td>
<td>heat flux short-wave</td>
<td>1</td>
<td>QSWO (F)</td>
<td>W/m²</td>
<td>137</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>heat flux long-wave</td>
<td>1</td>
<td>QLWO (F)</td>
<td>W/m²</td>
<td>138</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>heat flux latent</td>
<td>1</td>
<td>QLAO (F)</td>
<td>W/m²</td>
<td>139</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>heat flux sensible</td>
<td>1</td>
<td>QSEO (F)</td>
<td>W/m²</td>
<td>140</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>net freshwater flux + runoff</td>
<td>1</td>
<td>PRECO (F)</td>
<td>m/s</td>
<td>141</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>1</td>
<td>sea-level</td>
<td>1</td>
<td>ZO (P,R)</td>
<td>m</td>
<td>82</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>82</td>
<td>sea-level change</td>
<td>1</td>
<td>ZIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>hor. bar. stream-function</td>
<td>1</td>
<td>PSIUWE (D)</td>
<td>Sv</td>
<td>143</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>83</td>
<td>max. monthly mixed layer depth</td>
<td>1</td>
<td>AMLD (D)</td>
<td>m</td>
<td>142</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>142</td>
<td>sea-ice transport x</td>
<td>1</td>
<td>SICTRU</td>
<td>m³/s</td>
<td>147</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>143</td>
<td>sea-ice transport y</td>
<td>1</td>
<td>SICTRV</td>
<td>m³/s</td>
<td>148</td>
<td>M</td>
<td>(x)</td>
</tr>
<tr>
<td>183</td>
<td>mixed layer depth (SJ)</td>
<td>1</td>
<td>zmld</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>River Runoff</td>
<td>1</td>
<td>rivrun</td>
<td>m/s</td>
<td>305</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>mon. mean depth of convection</td>
<td>1</td>
<td>TMCDO</td>
<td>level</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## 7. Diagnostic and Mean Output

<table>
<thead>
<tr>
<th>Code</th>
<th>Content</th>
<th>L. Variable</th>
<th>Unit</th>
<th>fort.x</th>
<th>Cpp</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>ver. velocity</td>
<td>40 WOP (PR)</td>
<td>m/s</td>
<td>146</td>
<td>M D</td>
<td>(x)</td>
</tr>
<tr>
<td>69</td>
<td>depth of convection</td>
<td>1 KCONDEP (D)</td>
<td>level</td>
<td>90</td>
<td>K</td>
<td>(x)</td>
</tr>
<tr>
<td>110</td>
<td>vertical momentum diffusion</td>
<td>40 AVO</td>
<td>m**2/s</td>
<td>144</td>
<td>M D</td>
<td>(x)</td>
</tr>
<tr>
<td>111</td>
<td>vertical T,S diffusion</td>
<td>40 DVO</td>
<td>m**2/s</td>
<td>145</td>
<td>M D</td>
<td>(x)</td>
</tr>
<tr>
<td>612</td>
<td>wind mixing</td>
<td>40 WTMIX</td>
<td>m**2/s</td>
<td>245</td>
<td>M D</td>
<td>(x)</td>
</tr>
<tr>
<td>207</td>
<td>GM vertical velocity</td>
<td>40 WGO</td>
<td>m/s</td>
<td>246</td>
<td>M G</td>
<td>(x)</td>
</tr>
<tr>
<td>?</td>
<td>GM BollX</td>
<td>1 BOLX</td>
<td>?</td>
<td>159</td>
<td>M G</td>
<td>(x)</td>
</tr>
<tr>
<td>?</td>
<td>GM BollY</td>
<td>1 BOLY</td>
<td>?</td>
<td>160</td>
<td>M G</td>
<td>(x)</td>
</tr>
</tbody>
</table>

**Tab. 7.3:** Code Table for MPI-OM mean diagnostic output.

(x): Reasonable in the coupled setup.

M: Can be switch on with CPP flag MEAN.

D: Can be switch on with CPP flag DIFFDIAG.

K: Can be switch on with CPP flag KONVDIAG.

G: Can be switch on with CPP flag GRIDINFO.

<table>
<thead>
<tr>
<th>Code</th>
<th>Content</th>
<th>L. Variable</th>
<th>Unit</th>
<th>fort.x</th>
<th>Cpp</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>surface air temperature</td>
<td>1 TAF0 (F)</td>
<td>C</td>
<td>131</td>
<td>M F</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>cloud cover</td>
<td>1 FCL0U (F)</td>
<td></td>
<td>132</td>
<td>M F</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>surface u-stress</td>
<td>1 TX0 (F)</td>
<td>Pa/1025.</td>
<td>149</td>
<td>M F</td>
<td>(X)</td>
</tr>
<tr>
<td>53</td>
<td>surface v-stress</td>
<td>1 TYE (F)</td>
<td>Pa/1025.</td>
<td>150</td>
<td>M F</td>
<td>(X)</td>
</tr>
<tr>
<td>260</td>
<td>prescr. precipitation</td>
<td>1 FPRE0C (F)</td>
<td>m/s</td>
<td>133</td>
<td>M F</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>downward short-wave rad.</td>
<td>1 FSWR (F)</td>
<td>W/m**2</td>
<td>134</td>
<td>M F</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>dew-point temperature</td>
<td>1 FTDEW (F)</td>
<td>K</td>
<td>135</td>
<td>M F</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>10m wind-speed</td>
<td>1 FU10 (F)</td>
<td>m/s</td>
<td>130</td>
<td>M F</td>
<td></td>
</tr>
</tbody>
</table>

**Tab. 7.4:** Code Table for MPI-OM mean forcing output.

(x): Reasonable in the coupled setup.

M: Can be switch on with CPP flag MEAN.

F: Can be switch on with CPP flag FORCEDIAG.

<table>
<thead>
<tr>
<th>Code</th>
<th>Content</th>
<th>L. Variable</th>
<th>Unit</th>
<th>fort.x</th>
<th>Cpp</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>heat-flux sw over water</td>
<td>1 DQS0W0</td>
<td>W/m**2</td>
<td>247</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>heat-flux lw over water</td>
<td>1 DQL0W0</td>
<td>W/m**2</td>
<td>248</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>heat-flux se over water</td>
<td>1 DQSE0</td>
<td>W/m**2</td>
<td>249</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>heat-flux la over water</td>
<td>1 DQLAO</td>
<td>W/m**2</td>
<td>250</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>heat-flux net over water</td>
<td>1 DQTH0</td>
<td>W/m**2</td>
<td>251</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>heat-flux sw over seaice</td>
<td>1 DQS0W</td>
<td>W/m**2</td>
<td>252</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>heat-flux lw over seaice</td>
<td>1 DQL0W</td>
<td>W/m**2</td>
<td>253</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>heat-flux se over seaice</td>
<td>1 DQSEI</td>
<td>W/m**2</td>
<td>254</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>heat-flux la over seaice</td>
<td>1 DQLAI</td>
<td>W/m**2</td>
<td>255</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>heat-flux net over seaice</td>
<td>1 DQTHI</td>
<td>W/m**2</td>
<td>256</td>
<td>M H</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>Equi. temp over seaice</td>
<td>1 DTICE0</td>
<td>K</td>
<td>257</td>
<td>M H</td>
<td></td>
</tr>
</tbody>
</table>

**Tab. 7.5:** Code Table for MPI-OM mean heat-flux output.

(x): Reasonable in the coupled setup.

M: Can be switch on with CPP flag MEAN.

F: Can be switch on with CPP flag TESTOUT_HFL.
## 7.2. Output Files

<table>
<thead>
<tr>
<th>Code</th>
<th>Content</th>
<th>L.</th>
<th>Variable</th>
<th>Unit</th>
<th>fort.x</th>
<th>Cpp</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>landseamask (pressure points)</td>
<td>40</td>
<td>WETO</td>
<td></td>
<td>93</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>507</td>
<td>landseamask (vector points v)</td>
<td>40</td>
<td>AMSUUE</td>
<td></td>
<td>212</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>508</td>
<td>landseamask (vector points u)</td>
<td>40</td>
<td>AMSUO</td>
<td></td>
<td>213</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>84</td>
<td>depth at pressure points</td>
<td>1</td>
<td>DEPTO</td>
<td>m</td>
<td>96</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>484</td>
<td>depth at vector points (u)</td>
<td>1</td>
<td>DEUTO</td>
<td>m</td>
<td>196</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>584</td>
<td>depth at vector points (v)</td>
<td>1</td>
<td>DEUTE</td>
<td>m</td>
<td>197</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>184</td>
<td>level thickness (vector u)</td>
<td>40</td>
<td>DDUO</td>
<td>m</td>
<td>198</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>284</td>
<td>level thickness (vector v)</td>
<td>40</td>
<td>DDUE</td>
<td>m</td>
<td>199</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>384</td>
<td>level thickness (pressure)</td>
<td>40</td>
<td>DDPO</td>
<td>m</td>
<td>200</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>85</td>
<td>grid distance x</td>
<td>1</td>
<td>DLXP</td>
<td>m</td>
<td>151</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>86</td>
<td>grid distance y</td>
<td>1</td>
<td>DLYP</td>
<td>m</td>
<td>152</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>185</td>
<td>grid distance x (vector u)</td>
<td>1</td>
<td>DLXU</td>
<td>m</td>
<td>201</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>186</td>
<td>grid distance y (vector u)</td>
<td>1</td>
<td>DLVU</td>
<td>m</td>
<td>202</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>285</td>
<td>grid distance x (vector v)</td>
<td>1</td>
<td>DLXV</td>
<td>m</td>
<td>203</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>286</td>
<td>grid distance y (vector v)</td>
<td>1</td>
<td>DLYV</td>
<td>m</td>
<td>204</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>54</td>
<td>latitude in radians</td>
<td>1</td>
<td>GILA</td>
<td>rad</td>
<td>94</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>55</td>
<td>longitude in radians</td>
<td>1</td>
<td>GIPH</td>
<td>rad</td>
<td>97</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>354</td>
<td>latitude in degrees (pressure)</td>
<td>1</td>
<td>ALAT</td>
<td>deg</td>
<td>205</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>355</td>
<td>longitude in degrees (pressure)</td>
<td>1</td>
<td>ALON</td>
<td>deg</td>
<td>206</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>154</td>
<td>latitude in degrees (vector u)</td>
<td>1</td>
<td>ALATU</td>
<td>deg</td>
<td>208</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>155</td>
<td>longitude in degrees (vector u)</td>
<td>1</td>
<td>ALONU</td>
<td>deg</td>
<td>209</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>254</td>
<td>latitude in degrees (vector v)</td>
<td>1</td>
<td>ALATV</td>
<td>deg</td>
<td>210</td>
<td>G</td>
<td>(x)</td>
</tr>
<tr>
<td>255</td>
<td>longitude in degrees (vector v)</td>
<td>1</td>
<td>ALONV</td>
<td>deg</td>
<td>211</td>
<td>G</td>
<td>(x)</td>
</tr>
</tbody>
</table>

**Tab. 7.6:** Code Table for MPI-OM grid information output.

(x): Reasonable in the coupled setup.

G : Can be switch on with CPP flag GRIDINFO.

<table>
<thead>
<tr>
<th>Code</th>
<th>Content</th>
<th>L.</th>
<th>Variable</th>
<th>Unit</th>
<th>fort.x</th>
<th>Cpp</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>oasis net heat flux water</td>
<td>1</td>
<td>AOFLNHW</td>
<td>W/m^2</td>
<td>270</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>271</td>
<td>oasis downward short wave</td>
<td>1</td>
<td>AOFLSHW</td>
<td>W/m^2</td>
<td>271</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>272</td>
<td>oasis residual heat flux ice</td>
<td>1</td>
<td>AOFLRHI</td>
<td>W/m^2</td>
<td>272</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>273</td>
<td>oasis conduct. heat flux ice</td>
<td>1</td>
<td>AOFLCHI</td>
<td>W/m^2</td>
<td>273</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>274</td>
<td>oasis fluid fresh water flux</td>
<td>1</td>
<td>AOFLFRW</td>
<td>m/s</td>
<td>274</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>275</td>
<td>oasis solid fresh water flux</td>
<td>1</td>
<td>AOFLFRO</td>
<td>m/s</td>
<td>275</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>276</td>
<td>oasis wind stress water x</td>
<td>1</td>
<td>AOFLTXW</td>
<td>Pa/1025</td>
<td>276</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>277</td>
<td>oasis wind stress water y</td>
<td>1</td>
<td>AOFLTYW</td>
<td>Pa/1025</td>
<td>277</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>278</td>
<td>oasis wind stress ice x</td>
<td>1</td>
<td>AOFLTXI</td>
<td>Pa/1025</td>
<td>278</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>279</td>
<td>oasis wind stress ice x</td>
<td>1</td>
<td>AOFLTYI</td>
<td>Pa/1025</td>
<td>279</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
<tr>
<td>280</td>
<td>oasis wind speed</td>
<td>1</td>
<td>AOFLWSV</td>
<td>m/s</td>
<td>280</td>
<td>O</td>
<td>M OFD (x)</td>
</tr>
</tbody>
</table>

**Tab. 7.7:** Code Table for MPI-OM/ECHAM5 mean coupler output.

(x): Reasonable in the coupled setup.

M : Can be switch on with CPP flag MEAN.

O : Can be switch on with CPP flag OASIS.

OFD : Can be switch on with CPP flag OASIS_FLUX_DAYLY.
8. APPENDIX

8.1 Appendix A Auxiliary Subroutines

8.1.1 trian.f90

Called from mpiom.f90. Matrix triangulation to solve a set of linear equations by Gaussian elimination.

8.1.2 mo_parallel

Variables and subroutines for the parallelization. Including the subroutine bounds_exch which updates the cyclic boundaries of arrays

8.1.3 mo_mpi

Variables and subroutines for the MPI parallelization.

8.1.4 mo_couple

Variables and subroutines for the coupling to ECHAM.

8.1.5 rho1j.f90

Calculates the density $\rho(S, T, p)$, using the equation of state defined by the Joint Panel on Oceanographic Tables and Standards (UNESCO, 1981). See Gill (1982, appendix A3.1).

This subroutine calculates the density at all scalar "i"points for a given "j", i.e. even on land points. As a consequence the values of $T$ and $S$ on land points should have sensible magnitudes (e.g. $S$ must be positive !).
8.1.6 rho2.f90

Calculates the density $\rho(S, T, p)$, using the equation of state defined by the Joint Panel on Oceanographic Tables and Standards (UNESCO, 1981). See Gill (1982, appendix A3.1).

rho2.f90 returns the density of one location only and is used to compute the reference stratification.

8.1.7 adisit1.f90

Transformation from potential temperature $\Theta$ to in situ temperature $T$ for use in the UNESCO equation of state.

8.1.8 adisitj.f90

Transformation from potential temperature $\Theta$ to in situ temperature $T$ for use in the UNESCO equation of state. This subroutine calculates the temperature at all scalar “i” points for a given “j”, i.e. even on land points.

8.1.9 diagnosis.f90

Computes the total vertical mass fluxes, layer mean temperatures and kinetic energies in each time-step. Temperatures and kinetic energies are stored for diagnostics in a time series file.

8.1.10 nlopps.f90

Computes the so-called ”PLUME” convection scheme based on an original routine by E. Skyllingstad and T. Paluszkiewicz. Activated by the compile flag ”PLUME”.
### Appendix B

## List of Variables

### 8.2.1 Model Constants and Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_{sf}$</td>
<td>freezing sea-ice albedo</td>
<td>0.75</td>
</tr>
<tr>
<td>$\alpha_{sm}$</td>
<td>melting sea-ice albedo</td>
<td>0.70</td>
</tr>
<tr>
<td>$\alpha_{sf}$</td>
<td>freezing snow albedo</td>
<td>0.85</td>
</tr>
<tr>
<td>$\alpha_{sm}$</td>
<td>melting snow albedo</td>
<td>0.70</td>
</tr>
<tr>
<td>$\alpha_w$</td>
<td>sea water albedo</td>
<td>0.10</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>wind mixing stability parameter</td>
<td>0.03 kg m$^{-3}$</td>
</tr>
<tr>
<td>$\varepsilon$</td>
<td>emissivity of sea water</td>
<td>0.97</td>
</tr>
<tr>
<td>$\rho_a$</td>
<td>density of air</td>
<td>1.3 kg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho_i$</td>
<td>density of sea-ice</td>
<td>910 kg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho_s$</td>
<td>density of snow</td>
<td>330 kg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho_w$</td>
<td>density of sea water</td>
<td>1025 kg m$^{-3}$</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>Stefan-Boltzmann constant</td>
<td>$5.5 \times 10^{-8}$ W m$^{-2}$ K$^{-4}$</td>
</tr>
<tr>
<td>$\Lambda_V$</td>
<td>eddy viscosity relaxation coefficient</td>
<td>0.6</td>
</tr>
<tr>
<td>$\Lambda_D$</td>
<td>eddy diffusivity relaxation coefficient</td>
<td>0.6</td>
</tr>
<tr>
<td>$c_a$</td>
<td>specific heat capacity of air</td>
<td>$1004$ J kg$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>$c_w$</td>
<td>specific heat capacity of sea water</td>
<td>$4.0 \times 10^3$ J kg$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>$e$</td>
<td>ratio of principle axis of yield ellipse</td>
<td>2.0</td>
</tr>
<tr>
<td>$g$</td>
<td>acceleration due to gravity</td>
<td>$9.81$ m s$^{-2}$</td>
</tr>
<tr>
<td>$k_i$</td>
<td>thermal conductivity of sea ice</td>
<td>$2.17$ W m$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>$k_s$</td>
<td>thermal conductivity of snow</td>
<td>$0.31$ W m$^{-1}$ K$^{-1}$</td>
</tr>
<tr>
<td>$z_0$</td>
<td>wind mixing penetration depth</td>
<td>$40$ m</td>
</tr>
<tr>
<td>$A_k$</td>
<td>PP background vertical viscosity</td>
<td>$1.0 \times 10^{-4}$ m$^2$ s$^{-1}$</td>
</tr>
<tr>
<td>$A_w$</td>
<td>PP wind mixing</td>
<td>$5.0 \times 10^{-4}$ m$^2$ s$^{-1}$</td>
</tr>
<tr>
<td>$A_{VO}$</td>
<td>PP vertical viscosity parameter</td>
<td>$1.0 \times 10^{-2}$ m$^2$ s$^{-1}$</td>
</tr>
<tr>
<td>$B_H$</td>
<td>biharmonic horizontal viscosity</td>
<td>$1.1 \times 10^{-6}$ s$^{-1}$ ($\Delta x^4, \Delta y^4$)</td>
</tr>
<tr>
<td>$B_{BL}$</td>
<td>maximum BBL thickness</td>
<td>$500$ m</td>
</tr>
<tr>
<td>$C$</td>
<td>empirical internal ice pressure const.</td>
<td>$20$</td>
</tr>
<tr>
<td>$C_{RA}$</td>
<td>PP viscosity tuning constant</td>
<td>$5.0$</td>
</tr>
<tr>
<td>$C_{RD}$</td>
<td>PP diffusivity tuning constant</td>
<td>$5.0$</td>
</tr>
<tr>
<td>$C_W$</td>
<td>ocean-ice stress bulk transfer</td>
<td>$0.0045$</td>
</tr>
<tr>
<td>$D_b$</td>
<td>PP background vertical diffusivity</td>
<td>$1.0 \times 10^{-5}$ m$^2$ s$^{-1}$</td>
</tr>
<tr>
<td>$D_H$</td>
<td>harmonic horizontal diffusion</td>
<td>$2.5 \times 10^{-3}$ m s$^{-1}$ ($\Delta x, \Delta y$)</td>
</tr>
<tr>
<td>$D_w$</td>
<td>PP wind mixing</td>
<td>$5.0 \times 10^{-4}$ m$^2$ s$^{-1}$</td>
</tr>
<tr>
<td>$D_{VO}$</td>
<td>PP vertical diffusivity parameter</td>
<td>$1.0 \times 10^{-2}$ m$^2$ s$^{-1}$</td>
</tr>
<tr>
<td>$L_f$</td>
<td>latent heat of fusion</td>
<td>$2.5 \times 10^6$ J kg$^{-1}$</td>
</tr>
<tr>
<td>$L_s$</td>
<td>latent heat of sublimation</td>
<td>$2.834 \times 10^6$ J kg$^{-1}$</td>
</tr>
<tr>
<td>$L_v$</td>
<td>latent heat of vaporization</td>
<td>$2.5 \times 10^6$ J kg$^{-1}$</td>
</tr>
<tr>
<td>$P^*$</td>
<td>empirical internal ice pressure const.</td>
<td>$5000$ N m$^{-1}$</td>
</tr>
<tr>
<td>$S_{ice}$</td>
<td>salinity of sea-ice</td>
<td>$5$ psu</td>
</tr>
<tr>
<td>$T_{freeze}$</td>
<td>freezing temperature of sea water</td>
<td>$-1.9^\circ C$</td>
</tr>
<tr>
<td>$T_{melt}$</td>
<td>melting temperature of sea ice/snow</td>
<td>$0^\circ C$</td>
</tr>
<tr>
<td>$W_T$</td>
<td>wind mixing amplitude parameter</td>
<td>$5.0 \times 10^{-4}$ m$^2$ s$^{-1}$</td>
</tr>
</tbody>
</table>

**Tab. 8.1:** Constants and parameters used in the GROB3 setup of the ocean/sea ice model. Table is taken from Haak (2004).
8.2.2 Global Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>GROB3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE</td>
<td>number of zonal grid points</td>
<td>122</td>
</tr>
<tr>
<td>JE</td>
<td>number of meridional grid points</td>
<td>101</td>
</tr>
<tr>
<td>KE</td>
<td>number of vertical levels</td>
<td>40</td>
</tr>
</tbody>
</table>

Tab. 8.2: Global values for version GROB3

8.2.3 Model Variables

TO DO: Name all vector point defined variables in the U/V convention.

U/V denote the vector points in u and v direction on the C-grid. For every array that is indexed by U/V there exist two arrays. Sometimes, U/V points are still called E/O which used to denotes the EVEN/ODD parity of the north–south index of the HOPE model E-grid.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVO</td>
<td>$A_V$</td>
<td>vertical eddy viscosity</td>
</tr>
<tr>
<td>DVO</td>
<td>$D_V$</td>
<td>vertical eddy diffusivity</td>
</tr>
<tr>
<td>W0</td>
<td>$w$</td>
<td>vertical velocity</td>
</tr>
<tr>
<td>WPO</td>
<td>$p^{n+1,l}$</td>
<td>pressure in baroclinic subsystem iteration</td>
</tr>
</tbody>
</table>

Tab. 8.3: 3–dimensional arrays (IE,JE,KE+1)

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDU_E/O</td>
<td>$d_{uk}$</td>
<td>layer thicknesses at vector points</td>
</tr>
<tr>
<td>DDPO</td>
<td>$d_{wk}$</td>
<td>layer thicknesses at scalar points</td>
</tr>
<tr>
<td>PO</td>
<td>$p$</td>
<td>pressure</td>
</tr>
<tr>
<td>SAO</td>
<td>$S$</td>
<td>salinity</td>
</tr>
<tr>
<td>STABIO</td>
<td>$-\partial\rho/\partial z$</td>
<td>negative of vertical density gradient (stability)</td>
</tr>
<tr>
<td>THO</td>
<td>$\Theta$</td>
<td>potential temperature</td>
</tr>
<tr>
<td>UKO</td>
<td>$u', u$</td>
<td>baroclinic zonal velocity / total zonal velocity</td>
</tr>
<tr>
<td>VKE</td>
<td>$v', v$</td>
<td>baroclinic merid. velocity / total merid. velocity</td>
</tr>
<tr>
<td>UOE</td>
<td>$u$</td>
<td>total zonal velocity</td>
</tr>
<tr>
<td>VOE</td>
<td>$v$</td>
<td>total meridional velocity</td>
</tr>
</tbody>
</table>

Tab. 8.4: 3–dimensional arrays (IE,JE,KE)
### 8.2. Appendix B  List of Variables

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPTO</td>
<td>$H_p$</td>
<td>total depth at scalar points</td>
</tr>
<tr>
<td>DEUTE/O</td>
<td>$H_u$</td>
<td>total depth at vector points</td>
</tr>
<tr>
<td>DEUTI /E/O</td>
<td>$1/H_u$</td>
<td>inverse of total depth at vector points</td>
</tr>
<tr>
<td>DLXU/V</td>
<td>$\Delta x_\zeta$</td>
<td>zonal distance of 2 vector-points</td>
</tr>
<tr>
<td>DLYU/V</td>
<td>$\Delta y$</td>
<td>meridional distance of 2 vector/scalar points</td>
</tr>
<tr>
<td>DPY/E/O</td>
<td>$\Delta t/\Delta y$</td>
<td></td>
</tr>
<tr>
<td>DTDXU/E/O</td>
<td>$\Delta t/\Delta x_\zeta$</td>
<td></td>
</tr>
<tr>
<td>DTDYO</td>
<td>$\Delta t/\Delta y$</td>
<td></td>
</tr>
<tr>
<td>EMINPO</td>
<td>$E - P$</td>
<td>Evaporation minus precipitation</td>
</tr>
<tr>
<td>PX/E/O IN</td>
<td>$\int p_x dz$</td>
<td>vertically integrated zonal pressure gradient</td>
</tr>
<tr>
<td>PY/E/O IN</td>
<td>$\int p_y dz$</td>
<td>vertically integrated meridional pressure gradient</td>
</tr>
<tr>
<td>TXO</td>
<td>$\tau^x$</td>
<td>wind-stress zonal component</td>
</tr>
<tr>
<td>TYE</td>
<td>$\tau^y$</td>
<td>wind-stress meridional component</td>
</tr>
<tr>
<td>U1/E/O</td>
<td>$U$</td>
<td>barotropic zonal velocity (also $(1 - \beta)U$)</td>
</tr>
<tr>
<td>V1/E/O</td>
<td>$V$</td>
<td>barotropic meridional velocity (also $(1 - \beta)V$)</td>
</tr>
<tr>
<td>USO</td>
<td>$\beta(\Gamma_U + f\alpha)\Delta\Gamma_U$</td>
<td>see 5.2.9 and 5.2.10</td>
</tr>
<tr>
<td>VSE</td>
<td>$\beta(\Gamma_V - f\alpha)\Delta\Gamma_U$</td>
<td>see 5.2.9 and 5.2.10</td>
</tr>
<tr>
<td>UZO</td>
<td>$\Gamma_U$</td>
<td>see 5.2.9 and 5.2.8</td>
</tr>
<tr>
<td>VZE</td>
<td>$\Gamma_V$</td>
<td>see 5.2.9 and 5.2.8</td>
</tr>
<tr>
<td>Z1O</td>
<td>$\zeta^n$</td>
<td>sea level old time step</td>
</tr>
<tr>
<td>ZO</td>
<td>$\zeta^{n+1}$</td>
<td>sea level new time step</td>
</tr>
</tbody>
</table>

#### Tab. 8.5: 2–dimensional arrays (IE, JE)

<table>
<thead>
<tr>
<th>Name</th>
<th>Dimension</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAT</td>
<td>JE*2</td>
<td>$\phi$</td>
<td>latitudes</td>
</tr>
<tr>
<td>ALONG</td>
<td>IE*2+6</td>
<td>$\lambda$</td>
<td>longitudes</td>
</tr>
<tr>
<td>DZ</td>
<td>KE+1</td>
<td>$\Delta z_u$</td>
<td>vertical distances vector points</td>
</tr>
<tr>
<td>DI</td>
<td>KE+1</td>
<td>$1/\Delta z_u$</td>
<td></td>
</tr>
<tr>
<td>DZW</td>
<td>KE</td>
<td>$\Delta z_w$</td>
<td>vertical distances vertical velocity points</td>
</tr>
<tr>
<td>DWI</td>
<td>KE</td>
<td>$1/\Delta z_w$</td>
<td></td>
</tr>
<tr>
<td>SAF</td>
<td>KE</td>
<td>$S_{ref}$</td>
<td>reference salinity</td>
</tr>
<tr>
<td>TAF</td>
<td>KE</td>
<td>$\Theta_{ref}$</td>
<td>reference temperature</td>
</tr>
<tr>
<td>TIESTU</td>
<td>KE+1</td>
<td></td>
<td>vertical level of vector/scalar points see 4.3.2</td>
</tr>
<tr>
<td>TIESTW</td>
<td>KE+1</td>
<td></td>
<td>vertical level of vertical velocity points see 4.3.2</td>
</tr>
<tr>
<td>TRIDSY</td>
<td>IE, KE, 3</td>
<td></td>
<td>coefficients of vertical tridiagonal system</td>
</tr>
<tr>
<td>NUM</td>
<td>IE, JE*2</td>
<td></td>
<td>consecutively numbered oceanic scalar points</td>
</tr>
<tr>
<td>PGL</td>
<td>2*KBB+1, ILL</td>
<td>$A$</td>
<td>barotropic system matrix and elimination factors</td>
</tr>
</tbody>
</table>

#### Tab. 8.6: variables with various dimensions
<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIBET(_{E/O})</td>
<td>(\eta)</td>
<td>nonlinear shear viscosity of ice</td>
</tr>
<tr>
<td>HIBZET(_{E/O})</td>
<td>(\zeta)</td>
<td>nonlinear bulk viscosity of ice</td>
</tr>
<tr>
<td>SICOMO</td>
<td>(A)</td>
<td>sea ice compactness</td>
</tr>
<tr>
<td>SICPO</td>
<td>(P_I)</td>
<td>internal sea ice pressure</td>
</tr>
<tr>
<td>SICSHO</td>
<td></td>
<td>sea ice velocity shear</td>
</tr>
<tr>
<td>SICTHO</td>
<td>(h_I)</td>
<td>sea ice thickness</td>
</tr>
<tr>
<td>SICUO</td>
<td>(u_I)</td>
<td>zonal sea ice velocity</td>
</tr>
<tr>
<td>SICVE</td>
<td>(v_I)</td>
<td>meridional sea ice velocity</td>
</tr>
</tbody>
</table>

**Tab. 8.7:** Sea ice model variables (2-D)
8.3 Appendix C  File Formats

- **EXTRA:**
  EXTRA is a binary format which was developed at the University of Hamburg. It contains the describing variables date, code, level and field size. It does not contain any grid description. EXTRA is described in detail in the DKRZ Technical Report No. 6.

- **NetCDF:**
  NetCDF (network Common Data Form) is an interface for array-oriented data access and a library that provides an implementation of the interface. The netCDF library also defines a machine-independent format for representing scientific data. For a detailed description please refer to:

  http://my.unidata.ucar.edu/content/software/netcdf/index.html

- **ASCII:**
  ASCII is an abbreviation for American Standard Code for Information Interchange, developed through the American National Standards Institute. ASCII is a scheme of binary notation for machine-readable data.
BIBLIOGRAPHY


